Simulation of the Behavior of Agricultural Tire 7.50-20 by the Finite Element Method

Main Article Content

Raudel Flores-Moreno
Leonardo Arzuaga-Martínez
Arturo Martínez-Rodríguez
Gilberto de Jesús López-Canteñs
Eugenio Romantchik-Kriuchkova
Pedro Ramón Mayans-Céspedes

Abstract

The objective of the work was to obtain a numeric model of simulation for the tire 7.50-20 that are able to explain in an effective way the behavior of the static deflections to different pressures of pumping. Two simulation models were developed by the method of finite elements for the system rim-tire (7.50-20) to predict its behavior under static load with different pressures, evaluating the models starting from experimental data. For the experimental test the percentages of relative errors oscillated between 0.89 and 6.37 %. The model one presented direct relationship among the pressure of pumping and the static deflection, contradicting the experimental results. The relative deviation of the deflections obtained among the model two and the experimental data with load of 4 800 N and pressure of 0.23 MPa, were of only 0.06 %, being been very near to those obtained experimentally. By means of the numeric simulation was determined the deflection in the system rim-tire 7.50-20, under the action of static loads and considering three pressures of pumping (0,13; 0,23 and 0,31 MPa). The development of this model will benefit in a great way the design of tires giving a general vision of the relationship between aspects like the pressure of pumping, the load and the deflection

Article Details

How to Cite
Flores-Moreno, R., Arzuaga-Martínez, L., Martínez-Rodríguez, A., López-Canteñs, G. de J., Romantchik-Kriuchkova, E., & Mayans-Céspedes, P. R. (2019). Simulation of the Behavior of Agricultural Tire 7.50-20 by the Finite Element Method. Ingeniería Agrícola, 9(4). Retrieved from https://revistas.unah.edu.cu/index.php/IAgric/article/view/1171
Section
Artículos Originales

References

BOLARINWA, E.O.; OLATUNBOSUN, O.A.: “Finite element simulation of the tyre burst test. Proceedings of the Institution of Mechanical Engineers. Part D”, Journal of automobile engineering, 218(11): 1251-1258, 2004, ISSN: 0954-4070.

CASTRO, D.; GÜIZA, R.: Análisis del efecto de una grieta en el comportamiento estructural de una biela usando FEA, Inst. Grupo de Investigación en Energía y Medioambiente (GIEMA). Universidad Industrial de Santander, Colombia, Engineering Sciences [physics]/ Mechanics [physics.med-ph]/ Mechanics of the structures [physics.class-ph] , Colombia, 2017.

DALMAU, M.E.; JAUREGUIZAHAR, L.F.; KUSTER, J.; MARZOCCA, A.J.: “Estudio y caracterización de modos normales en neumáticos para vehículos de pasajeros. Gerencia de Investigación y Desarrollo - Fate S.A.I.C.I.”, En: Anales Afa, vol. 25, pp. 214-219, 2014, ISBN: 1850-1168.

FLORES, M.R.; MARTÍNEZ, R.A.; VALERIO, P.S.G.; DE LA CRUZ, V.L.; LAFFITA, L.A.: “Determinación de propiedades físico-mecánicas del material componente de un neumático de tractor”, Revista Ciencias Técnicas Agropecuarias, 19(3): 57-61, 2010, ISSN: 1010-2760, e-ISSN: 2071-0054.

GONZÁLEZ, C.O.; HERRERA, S.M.; IGLESIAS, C.C.E.; DIEGO, N.F.; URRIOLAGOITIA, S.G.; HERNÁNDEZ, G.L.H.: “Modelo en elementos finitos de la interacción neumático-suelo”, Revista Mexicana de Ciencias Agrícolas, 3(4): 664-671, 2012, ISSN: 2007-0934.

KABE, K.; KOISHI, M.: “Tire cornering simulation using finite element analysis”, Journal of Applied Polymer Science, 78(8): 1566-1572, 2000, ISSN: 0021-8995.

LEE, J.H.: “Statistical modeling and comparison with experimental data of tire-soil interaction for combined longitudinal and lateral slip”, Journal of Terramechanics, 58: 11-25, 2015, ISSN: 0022-4898, DOI: https://doi.org/10.1016/j.jterra.2014.12.005 .

LEE, J.H.; GARD, K.: “Vehicle-soil interaction: testing, modeling, calibration and validation”, Journal of Terramechanics, 52: 9-21, 2014, ISSN: 0022-4898, DOI: https://doi.org/10.1016/j.jterra.2013.12.001 .

LOZADA, A.F.V.; SUQUILLO, N.R.G.: “Analysis by the finite element method of the behavior of the ABS brake pads with materials based on steel and zinc discretizing the continuous element using CAE software”, Enfoque UTE, 9(1): 188-203, 2018, ISSN: 1390-6542, DOI: https://doi.org/10.29019/enfoqueute.v9n1.259 .

MULLER, H.P.; NEUMAN, P.; STORM, R.: Tabla de estadística matemática, Ed. Mir, Finanzas y estadísticas, Moscú, Rusia, 131 p., 1982.

SENATORE, C.; SANDU, C.: “Off-road tire modeling and the multi-pass effect for vehicle dynamics simulation”, Journal of Terramechanics, 48(4): 265-276, 2011, ISSN: 0022-4898, DOI: https://doi.org/10.1016/j.jterra.2011.06.006 .

SINGH, N.K.; SINGH, K.K.: “Review on impact analysis of FRP composites validated by LS‐DYNA”, Polymer Composites, 36(10): 1786-1798, 2015, ISSN: 0272-8397, DOI: 10.1002/pc.23064 .

STICKLE, M.; DE LA FUENTE, P.; OTEO, C.: “Mecánica de Contacto de Cuerpos Deformables. Interacción suelo-estructura”, Revista de Investigación “Pensamiento Matemático, (1), 2011, ISSN: 2174-0410, DOI: doaj.org/article:8cfe11f4485a4a6193037565b15b7f43 .

TAHERI, S. h; SANDU, C.; TAHERI, S.; PINTO, E.; GORSICH, D.: “A technical survey on Terramechanics models for tire-terrain interaction used in modeling and simulation of wheeled vehicles”, Journal of Terramechanics, 57: 1-22, 2015, ISSN: 0022-4898, DOI: 10.1016/j.jterra.2014.08.003 .

WAN, X.; SHAN, Y.; LIU, X.; WANG, H.; WANG, J.: “Simulation of biaxial wheel test and fatigue life estimation considering the influence of tire and wheel camber”, Advances in Engineering Software, 92: 57-64, 2016, ISSN: 0965-9978, DOI: https://doi.org/10.1016/j.advengsoft.2015.11.005 .

ZHAO, Y.; ZANG, L.; CHEN, Y.; LI, B.; WANG, J.: “Non-pneumatic mechanical elastic wheel natural dynamic characteristics and influencing factors”, Journal of Central South University, 22(5): 1707-1715, 2015, ISSN: 2095-2899, DOI: https://doi.org/10.1007/s11771-015-2689-1.

Most read articles by the same author(s)

1 2 > >>