Use of Drones or Unmanned Aerial Vehicles in Precision Agriculture

Main Article Content

Rodolfo Ríos-Hernández

Abstract

This work addresses the problem related to the use of unmanned aerial vehicles (UAV or drones) in agriculture. The use of drones in conjunction with other technologies for the study of crops is becoming more and more frequent, based on the complexity of natural systems for its study, since in most cases must carry out monitoring, sampling, monitoring, etc., which are very complicated or high risk and this technique allows a quick and quality assessment and decision making. Since the nineteenth century, when its use for military purposes for remote surveillance began, until today the growth of these devices or unmanned units has been originating as a powerful technology also developed in the civil sector, specifically in the field of precision agriculture. Following these scientific and technological advances, in the last decade, farmers began using them to monitor their fields, as well as to aid precision agriculture programs. There are estimates that 80-90 % of the drone market in the next decade will be used in agriculture.

Article Details

How to Cite
Ríos-Hernández, R. (2021). Use of Drones or Unmanned Aerial Vehicles in Precision Agriculture. Ingeniería Agrícola, 11(4). Retrieved from https://revistas.unah.edu.cu/index.php/IAgric/article/view/1469
Section
Puntos de Vista

References

AL-ARAB, M.; TORRES, R.A.; TICLAVILCA, A.; JENSEN, A.; MCKEE, M.: “Use of high-resolution multispectral imagery from an unmanned aerial vehicle in precision agriculture”, En: 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Ed. IEEE, Melbourne, Australia, pp. 2852-2855, 2013, ISBN: 1-4799-1114-3.

BERRÍO, M.; VIVIANA, A.; MOSQUERA, T.; ALZATE, V.: “Uso de drones para el análisis de imágenes multiespectrales en agricultura de precisión., 13 (1), 28-40”, @ limentech, Ciencia y Tecnología Alimentaria, 13(1): 28-40, 2015, ISSN: 1692-7125.

FOYER, C.; MATTHEW, P.: Sink relationships, Ed. Nature Publishing Group, Encyclopedia of Life Sciences ed., United Kingdom, 11 p., 2001.

GARCÍA, E.; FLEGO, F.: “Agricultura de precisión”, Revista Ciencia y Tecnología., 2008, Disponible en: http://www. palermo. edu/ingenier ia/C iencia_y_t ecnolog ia/ciencia_y_tecno_8. html.

HASSAN, E.L.; TORRES, R.A.; MCKEE, M.: “Assessment of optimal irrigation water allocation for pressurized irrigation system using water balance approach, learning machines, and remotely sensed data”, Agricultural Water Management, 153: 42-50, 2015, ISSN: 0378-3774.

KOH, P.L.; WICH, S.A.: “Dawn of drone ecology: low-cost autonomous aerial vehicles for conservation”, Tropical conservation science, 5(2): 121-132, 2012, ISSN: 1940-0829.

KRZYSZTOF, B.: Secrets of UAV photomapping. Presented satellite maps CNES/Spotimage), [en línea], Inst. Satellite maps CNES/Spotimage), USA, 2011, Disponible en: http://s3.amazonaws.com/DroneMapper_US/documentation/pt eryx-mapping-secrets.pdf.

MARTÍNEZ, C.L.; CASTERAD, S.M.A.: Incorporación de tecnologías de información territorial en una explotación agraria de secano ante la práctica de agricultura de precisión, 2012.

MULLEN, R.: Manual of photogrammetry, Ed. Asprs Publications, 2004, ISBN: 1-57083-071-1.

PATEL, P.: “Agriculture drones are finally cleared for takeoff [News]”, IEEE Spectrum, 53(11): 13-14, 2016, ISSN: 0018-9235.

REYES, S.L.M.; PÉREZ, C.M.: Implantación del cuadro de mando integral en la empresa Geocuba Oriente Norte, Revista de Desarrollo Sustentable, Negocios, Emprendimiento y Educación, 2020.

STEHR, N.J.: “Drones: The newest technology for precision agriculture”, Natural Sciences Education, 44(1): 89-91, 2015, ISSN: 2168-8281.

TORRES, R.A.: “Use of UAV for support of intensive agricultural management decisions: from science to commercial applications”, En: Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping II, Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping II, ser. 102180A, Ed. International Society for Optics and Photonics, vol. 10218, 2017.

TORRES, S.J.P.: “Puesta a punto de un vehículo aéreo no tripulado (UAV) para detección de malas hierbas en fase temprana: resolución especial y latura de vuelo”, En: XIV Congreso de la Sociedad Española de Malherbología, Valencia-España, pp. 43-47, 2013.

VERDIN, J.; PEDREROS, D.; EILERTS, G.: Índice diferencial de vegetación normalizado (NDVI), Inst. FEWS-Red de alerta temprana contra la inseguridad alimentaria, USGS/EROS Data Center, Centroamérica, 2003.