Artificial neural networks in the reference evapotranspiration estimation

Main Article Content

Alberto A. Méndez-Jocik
Daniel Ponce de León-Lima

Abstract

Artificial neural networks (ANN) is a powerful modeling tool based on the principles of artificial intelligence suitable for the analysis of complex ecosystems which combined with remote sensing techniques can provide answers where mathematical and physical equations lose their scope. In this first analysis, seven variables were included, surface temperature and emissivity as radiometric products from MODIS 11; the ambient or air temperature, the dew point temperature, as well as the solar zenith angle from MODIS 7, and then processed according to the equation from Mendez, 2004. Moreover, the Normalized Difference Vegetation Index (NDVI) from MODIS band 13. In the case of the wind speed, geostatistical modeling procedures were applied.

Article Details

How to Cite
Méndez-Jocik, A. A., & Ponce de León-Lima, D. (2017). Artificial neural networks in the reference evapotranspiration estimation. Ingeniería Agrícola, 7(4), 23–30. Retrieved from https://revistas.unah.edu.cu/index.php/IAgric/article/view/789
Section
Artículos Originales
Author Biographies

Alberto A. Méndez-Jocik, Instituto de Investigaciones de Ingeniería Agrícola (IAgric)

Dr.C.

Daniel Ponce de León-Lima, Universidad Estatal de la Península de Santa Elena, Cantón la Libertad

Dr.C.

References

ALLEN, R.G.; PEREIRA, L.S.; RAES, D.; SMITH, M.: Evapotranspiración del cultivo: Guías para la determinación de los requerimientos de agua de los cultivos, [en línea], ser. Estudio FAO Riego y Drenaje, no. ser. 56, Ed. FAO, Roma, Italy, 298 p., 2006, ISBN: 92-5-304219-2, Disponible en: http://www.fao.org/docrep/009/x0490s/x0490s00.htm, [Consulta: 30 de mayo de 2017].

BENNETT, T.J.: “A Coupled Atmosphere-Sea Ice Model Study of the Role of Sea Ice in Climatic Predictability”, Journal of the Atmospheric Sciences, 39(7): 1456-1465, 1 de julio de 1982, ISSN: 0022-4928, DOI: 10.1175/1520-0469(1982)039<1456:ACASIM>2.0.CO;2.

BISHT, G.; VENTURINI, V.; ISLAM, S.; JIANG, L.: “Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days”, Remote Sensing of Environment, 97(1): 52-67, 15 de julio de 2005, ISSN: 0034-4257, DOI: 10.1016/j.rse.2005.03.014.

HONGXING, L.; PHILIP, C.; HAN-PANG, H.: Fuzzy Neural Intelligent Systems: Mathematical Foundation and the Applications in Engineering, [en línea], Ed. CRC Press, Boca Raton, Fla., 371 p., 2001, ISBN: 978-0-8493-2360-7, Disponible en: https://www.amazon.com/Fuzzy-Neural-Intelligent-Systems-Mathematical/dp/0849323606, [Consulta: 31 de agosto de 2017].

IPCC (GRUPO INTERGUBERNAMENTAL DE EXPERTOS SOBRE EL CAMBIO CLIMÁTICO): Cambio climático 2007: Informe de síntesis, Pachauri, R.K. y Reisinger, A. (eds.), Ed. IPCC, 1.a ed., Ginebra, Suiza, 104 p., 2007, ISBN: 92-9169-322-7.

JENSEN, J.R.: Introductory digital image processing: a remote sensing perspective, no. solc. G70.4.J46 1996, ser. Prentice Hall series in geographic information science, Ed. Prentice Hall, 2.a ed., Upper Saddle River, N.J, 316 p., 1996, ISBN: 978-0-13-205840-7.

KIŞI, Ö.; ÖZTÜRK, Ö.: “Adaptive Neurofuzzy Computing Technique for Evapotranspiration Estimation”, Journal of Irrigation and Drainage Engineering, 133(4): 368-379, 1 de agosto de 2007, ISSN: 0733-9437, 1943-4774, DOI: 10.1061/(ASCE)0733-9437(2007)133:4(368).

KUMAR, M.; RAGHUWANSHI, N.S.; SINGH, R.; WALLENDER, W.W.; PRUITT, W.O.: “Estimating Evapotranspiration using Artificial Neural Network”, Journal of Irrigation and Drainage Engineering , 128(4): 224-233, 1 de agosto de 2002, ISSN: 0733-9437, 1943-4774, DOI: 10.1061/(ASCE)0733-9437(2002)128:4(224).

LÓPEZ, T.: Caracterización del movimiento del agua en suelos irrigados del sur de La Habana: contribución metodológica al procedimiento actual para la determinación de los balances hídricos, Instituto de Investigaciones de Riego y Drenaje, Tesis de Doctorado, La Habana, Cuba, 108 p., 2001.

MÉNDEZ, A.A.; VENUS, V.: “Estimación de la temperatura ambiental a escala regional mediante procesamiento de imágenes de satélites”, Ciencias de la Tierra y el Espacio, 7: 10-20, 2006, ISSN: 1729-3790.

NIEMELA, S.; RAISANEN, P.; SAVIJARVI, H.: “Comparison of surface radiative flux parameterizations Part II. Shortwave radiation”, Atmospheric Research, 58: 141-154, 2001, ISSN: 0169-8095.

RAMÍREZ, E.A.: “La distribución de la evapotranspiración de referencia en Cuba”, Ciencia y Técnica en la Agricultura. Riego y Drenaje, 12(1): 85-92, 1989, ISSN: 1013-9850.

STANCALIE, G.; PERDIGAO, A.; PESSANHA, L.: “Possibilities of deriving some useful agrometeorological parameters from the remotely sensed data-from current and new sensors-with the integration with other sources of information”, [en línea], En: Meteorological Applications for Agriculture, Ed. 3rd Management Committee and the Working Groups, Budapest, Hungary, p. 40, 2001, Disponible en: http://agromet-cost.bo.ibimet.cnr.it/index.php?id=109, [Consulta: 30 de agosto de 2017 ].

WANG, Y.-M.; TRAORE, S.; KERH, T.: “Neural network approach for estimating reference evapotranspiration from limited climatic data in Burkina Faso”, WSEAS Transactions on Computers, 7(6): 704-713, 2008, ISSN: 1109-2750.

YANG, F.: Estimate evapotranspiration from remote sensing data an artificial neural network approach, [en línea], no. CS539, Inst. University of Wisconsin Madison, Artificial Neural Network and Fuzzy Logic Final Project, USA, 2006, Disponible en: http://www.library.wisc.edu/, [Consulta: 19 de julio de 2016].

ZAMORA, H.E.; CHATERLÁN, D.Y.: “Estudios sobre evapotranspiración de referencia en Cuba”, Revista Ciencias Técnicas Agropecuarias, 10(3): 87-90, 2001, ISSN: 1010-2760, 2071-0054.