Evaluation of windbreaks for the protection of photovoltaic panels located in rural areas

Main Article Content

Alexander Laffita-Leyva
Arturo Martínez-Rodríguez
Pedro A. Valdés-Hernández
Agustín Alonso-Fraga
Rigoberto Acosta-Díaz

Abstract

The research belongs to a project approved by the National Energy Program. The objective of the work is to evaluate the protection effect that windbreak curtains can provide to a photovoltaic field located in a rural area, in the face of hurricane force winds, applying Computational Fluid Dynamics (CFD) tools. A windbreaker of Bugambilia (Bougainvillea spectabilis) of 2 and 3 m in height and porosities of 0.56 and 0.79 is simulated. The distribution of wind speeds in the environment of a photovoltaic field sector composed of ten batteries, made up of 10 photovoltaic modules each with an arrangement of 5x2 panels, are determined for different intensities and direction of the winds. Likewise, the aerodynamic loads and the Von Mises stresses acting on the panels are determined. As a result, it is obtained that the curtain provides effective protection to the entire photovoltaic field, preserving the integrity of the solar panels, due to the fact that the maximum dynamic tensions reached do not exceed the permissible loads for winds of up to 56 m / s (200 km / h ) coinciding with the upper limits of the wind speed in category III hurricanes of the Saffir Simpson scale.

Article Details

How to Cite
Laffita-Leyva, A., Martínez-Rodríguez, A., Valdés-Hernández, P. A., Alonso-Fraga, A., & Acosta-Díaz, R. (2021). Evaluation of windbreaks for the protection of photovoltaic panels located in rural areas. Ingeniería Agrícola, 11(3). Retrieved from https://revistas.unah.edu.cu/index.php/IAgric/article/view/1396
Section
Artículos Originales

References

ABJEG, H.: Concentrated photovoltaic tracker component stability and economic study, School of science and engineering of Morocco, Eng. Thesis, Morocco, 2016.

ALUCRASA S.A.: Soluciones en aluminio y cristal, [en línea], Alucrasa, 2008, Disponible en: http://www.alucrasa.com/?s=faq, [Consulta: 10 de diciembre de 2018].

BATISTA, T.M.; MATOS, P.F.: “¿Realidad o incertidumbre?”, Revista Energía y tú, 61: 29-31, 2013, ISSN: 1028-9925.

CASTELLI, M.R.; TONIATO, S.; BENINI, E.: “Numerical Simulation of the Aerodynamic Loads acting on top of the SMART Centre for PV Applications”, International Journal of Industrial and Manufacturing Engineering, 6(3): 725-730, 2012.

EUROGLAS S.A.: Ficha técnica de cristal templado, [en línea], Euroglas, 2013, Disponible en: http://euroglas.mx/sites/default/files/paradescargar/fichaTEMPLADO3.pdf, [Consulta: 10 de diciembre de 2013].

GILLIES, J.; NICKLING, W.; KING, J.: “Drag coefficient and plant form response to wind speed in three plant species: Burning Bush (Euonymus alatus), Colorado Blue Spruce (Picea pungens glauca.), and Fountain Grass (Pennisetum setaceum)”, Journal of Geophysical Research: Atmospheres, 107(D24): 1-15, 2002, ISSN: 0148-0227, DOI: https://dx.doi.org/10.1029/2001jd001259.

GOFRAN, C.: Experimental validation of CFD model predicting wind effects on inclined-roof mounted photovoltaic modules, KTH Industrial Engineering and Management Department of Energy Technology Division of Heat and Power Technology, Theses (in option of academic title Master of Science), Stockholm, 2008.

GOLBERG, D.; BOLDES, U.; COLMAN, J.: Capítulo 5: La protección de los cultivos de los efectos del viento: En Viento, Suelo y Plantas/Edit, Ed. INTA, INTA ed., Argentina, 130 p., 2003, ISBN: 987-521-104-4.

GRALA, K.R.: An evaluation of the benefits and costs of in-field shelterbelts in Midwestern USA, [en línea], Midwestern, Retrospective Theses and Dissertations, Midwestern USA, 2004, Disponible en: https://lib.dr.iastate.edu/rtd/1163, [Consulta: 10 de diciembre de 2016].

LÓPEZ, L.A.; LEÓN, F.E.D.; PARNÁS, V.B.E.; CATALDO, O.J.: “Estudio de coeficientes de presión en paneles solares frente a la acción del viento”, Revista Cubana de Ingeniería, 7(3): 35-44, 2017, ISSN: 2223-1781.

MENACHO, J.; GARCÍA, G.A.A.: “A Study about the Protection of an Array of Solar Panels from the Wind Load Action”, En: World Congress on Engineering, World Congress on Engineering, vol. 3, 2013, ISBN: 978-988-19252-9-9.

NC-285:2003: Carga de viento. Método de cálculo, Inst. Oficina Nacional de Normalización, Norma Cubana NC, La Habana, Cuba, vig de 2003.

ŘEHÁČEK, D.; KHEL, T.; KUČERA, J.; VOPRAVIL, J.; PETERA, M.: “Effect of windbreaks on wind speed reduction and soil protection against wind erosion”, Soil and Water Research, 12(2): 128-135, 2017, ISSN: 1805-9384, DOI: https://dx.doi.org/10.17221/45/2016-SWR.

SALMAN, A.; HOMSIRIKAMOL, E.; SHIH, P.J.: “Solar Panels Support Systems in Tropical Countries: An Inexpensive Approach”, ALAM CIPTA, International Journal of Sustainable Tropical Design Research and Practice, 6(2): 53-58, 2014, ISSN: 2289-3687.

WANG, H.; TAKLE, E.S.: “Model-simulated influences of shelterbelt shape on wind-sheltering efficiency”, Journal of Applied Meteorology and Climatology, 36(6): 695-704, 1997, ISSN: 1520-0450.

WANG, H.; TAKLE, E.S.; SHEN, J.: “Shelterbelts and windbreaks: mathematical modeling and computer simulations of turbulent flows”, Annual Review of Fluid Mechanics, 33(1): 549-586, 2001, ISSN: 0066-4189.

ZHOU, X.; BRANDLE, J.; MIZE, C.; TAKLE, E.: “Three-dimensional aerodynamic structure of a tree shelterbelt: Definition, characterization and working models”, Agroforestry systems, 63(2): 133-147, 2005, ISSN: 1572-9680.

Most read articles by the same author(s)