A Literature Review about Models to Predict Milk Production

Main Article Content

Rudibel Perdigón Llanes
Neilys González Benítez

Abstract

Milk has a high nutritional value and is one of the most widely consumed foods in the world. Its production has a positive impact on the economic development of society and contributes to the food security of the nations. Forecasting future production of this food contributes to improving the efficiency of its production chain and facilitates decision-making in dairy industry organizations. However, cattle milk production is influenced by several factors that complicate and hinder its prediction. In this paper, a systematic review of the literature related to the development and application of models to predict bovine milk production was carried out. The academic databases Google Scholar, Scielo and ScienceDirect were used to search for information. The analysis carried out allowed the identification of different significant elements about these models that contribute to determine their application in specific situations or environments. Some of these elements are the input variables used, the methods to calculate the forecast error and the main strengths and weaknesses of the identified models.

Article Details

How to Cite
Perdigón Llanes, R., & González Benítez, N. (2020). A Literature Review about Models to Predict Milk Production. Ingeniería Agrícola, 10(4). Retrieved from https://revistas.unah.edu.cu/index.php/IAgric/article/view/1312
Section
Puntos de Vista

References

ABDEL, G.S.: Economic Analysis of Resources Use in Milk Production in Kuku Farms- East Nile- Khartoum Sudan, [en línea], Sudan University of Science and Technology, Tesis de Doctorado, Sudan, 128 p., 2019, Disponible en: http://repository.sustech.edu/handle/123456789/22664.

ADRIAENS, I.; HUYBRECHTS, T.; AERNOUTS, B.; GEERINCKX, K.; PIEPERS, S.; KETELAERE, B.; SAEYS, W.: “Method for short-term prediction of milk yield at the quarter level to improve udder health monitoring”, Journal Dairy Science, 101(11): 10327-10336, 2018, ISSN: 0022-0302, DOI: https://doi.org/10.3168/jds.2018-14696.

ANDRÉ, G.; ENGEL, B.; BERENTSEN, P.B.M.; VAN DUINKERKEN, G.; OUDE, L.A.G.J.M.: “Adaptive models for online estimation of individual milk yield response to concentrate intake and milking interval length of dairy cows”, The Journal of Agricultural Science, 149(6): 769-781, 2011, ISSN: 1469-5146, DOI: https://doi.org/10.1017/S0021859611000311.

ARAS, S.; DEVECI, Í.; POLAT, C.: “Comparative Study On Retail Sales Forecasting Between Single And Combination Methods”, Journal of Business Economics and Management, 18(5): 803–832, 2017, ISSN: 1611-1699, DOI: https://doi.org/10.3846/16111699.2017.1367324.

ARTEAGA, L.; BURBANO, J.: “Efectos del cambio climático: Una mirada al Campo”, Revista de Ciencias Agrícolas, 35(2): 79-91, 2018, ISSN: 0120-0135, DOI: http://dx.doi.org/10.22267/rcia.183502.93.

AVILÉS, V.G.; ESPINOSA, G.J.A.; URESTI, J.G.; ÁVILA, A.V.D.; MARTÍNEZ, C.F.E.: “Análisis de vulnerabilidad del sector agropecuario ante el cambio climático en la cuenca del rio Nautla”, [en línea], En: XXVI Reunión Científica Tecnológica, Forestal y Agropecuaria Tabasco 2014, Universidad Juárez Autónoma de Tabasco, pp. 719-727, Tabasco, México, 2015, ISBN: 978-607-606-212-8, Disponible en: ftp://dgf.uchile.cl/pub/maisa/SOC28/Capitulo4_Vulnerabilidad_Silvoagropecuaria/IV%20-%20Vulnerabilidad%20-%20Informe%20Final.pdf.

AYE, G.; BALCILAR, M.; GUPTA, R.; MAJUMDAR, A.: “Forecasting aggregate retail Sales: The case of South Africa”, International Journal of Production Economics, 160: 66-79, 2015, ISSN: 0925-5273, DOI: https://doi.org/10.1016/j.ijpe.2014.09.033.

BONIECKI, P.; LIPIŃSKI, M.; KOSZELA, K.; PRZYBYŁ, J.: “Neural prediction of cows’ milk yield according to environment temperature”, African Journal of Biotechnology, 12(29): 4707-4712, 2013, ISSN: 1684-5315, DOI: https://doi.org/10.5897/AJB2012.2984.

COBO, R.; TORRES, V.; GARCÍA, A.; BORROTO, O.: “El análisis económico de la producción de leche en entidades cubanas a partir de modelos económico matemático”, Shatiri, 8: 150-170, 2015, ISSN: 2631-2905, DOI: https://doi.org/10.32645/13906925.403.

DA ROSA, R.; GOLDSCHMIDT, G.; KUNST, R.; DEON, C.; DA COSTA, C.A.: “Towards combining data prediction and internet of things to manage milk production on dairy cows”, Computers and Electronics in Agriculture, 169, 2020, ISSN: 0168-1699, DOI: https://doi.org/10.1016/j.compag.2019.105156.

DONGRE, V.B.; GANDHI, R.S.; SINGH, A.; RUHIL, A.P.: “Comparative efficiency of artificial neural networks and multiple linear regression analysis for prediction of first lactation 305-day milk yield in Sahiwal cattle”, Livestock Science, 147(1-3): 192-197, 2012, ISSN: 1871-1413, DOI: https://doi.org/10.1016/j.livsci.2012.04.002.

FANG, T.; LAHDELMA, R.: “Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system”, Applied Energy, 179: 544–552, 2016, ISSN: 0306-2619, DOI: https://doi.org/10.1016/j.apenergy.2016.06.133.

FAVERDIN, P.; BARATTE, C.; DELAGARDE, R.; PEYRAUD, J.L.: “GrazeIn: a model of herbage intake and milk production for grazing dairy cows. 1. Prediction of intake capacity, voluntary intake and milk production during lactation”, Grass and Forage Science, 66(1): 29-44, 2011, ISSN: 1365-2494, DOI: https://doi.org/10.1111/j.1365-2494.2010.00776.x.

GARCETE, A.; BENÍTEZ, R.; PINTO, R.D.; VÁZQUEZ, A.: “Técnica de pronóstico de la demanda basada en Business Intelligence y Machine Learning”, [en línea], En: Simposio Argentino sobre Tecnología y Sociedad, Argentina, pp. 193-202, 2017, Disponible en: http://sedici.unlp.edu.ar/handle/10915/64728.

GHALEHKHONDABI, I.; ARDJMAND, E.; WECKMAN, G.; YOUNG, W.: “An overview of energy demand forecasting methods published in 2005–2015”, Energy Systems, 8(2): 411–447, 2017, ISSN: 1868-3975, DOI: https://doi.org/10.1007/s12667-016-0203-y.

GRÆSBØLL, K.; KIRKEBY, C.; SAXMOSE, S.; HALASA, T.; TOFT, N.; ENGBO, L.: “A Robust Statistical Model to Predict the Future Value of the Milk Production of Dairy Cows Using Herd Recording Data”, Frontiers in Veterinary Science, 4: 13-19, 2017, ISSN: 2297-1769, DOI: https://doi.org/10.3389/fvets.2017.00013.

GUNNAR, B.: “Different methods to forecast milk delivery to dairy: a comparison for forecasting”, International Journal of Agricultural Management, 4(3): 132-140, 2015, ISSN: 2047-3710, DOI: https://doi.org/10.5836/ijam/2015-03-132.

GUTIÉRREZ, F.; ESTRELLA, A.; IRAZÁBAL, E.; QUIMIZ, V.; PORTILLA, A.; BONIFAZ, N.: “Mejoramiento de la eficiencia de la proteina de los pastos en bovinos de leche utilizando cuatro formulaciones de balanceados”, La Granja: Revista de Ciencias de la Vida, 28(2): 116-123, 2018, ISSN: 1390-3799, DOI: http://doi.org/10.17163/lgr.n28.2018.09.

HARIZANOVA, M.T.; HARIZANOVA, B.H.: “Ardl Models Concerning Cattle Number and Cow Milk Production in Bulgaria”, Economic Alternatives, 13(1): 63-76, 2019, ISSN: 1312-7462.

HEARD, J.W.; HANNAH, M.; HO, C.K.M.; KENNEDY, E.; DOYLE, P.T.; JACOBS, J.L.; WALES, W.J.: “Predicting milk responses to cereal-based supplements in grazing dairy cows”, Animal Production Science, 57(4): 746-759, 2017, ISSN: 1836-5787, DOI: https://doi.org/10.1071/AN15422.

HOSSEIN-, Z.N.G.: “Comparison of non-linear models to describe the lactation curves of milk yield and composition in Iranian Holsteins”, The Journal of Agricultural Science, 152(2): 309–324, 2014, ISSN: 1469-5146, DOI: https://doi.org/10.1017/S0021859613000415.

HYNDMAN, R.J.; ATHANASOPOULOS, G.: Forecasting: principles and practice, [en línea], Ed. OTexts, Second ed., 2018, ISBN: 978-0-9875071-1-2, Disponible en: http://otexts.com/fpp2/.

JENSEN, D.B.; VAN DER VOORT, M.; HOGEVEEN, H.: “Dynamic forecasting of individual cow milk yield in automatic milking systems”, Journal Dairy Science, 101(12): 1–12, 2018, ISSN: 0022-0302, DOI: https://doi.org/10.3168/jds.2017-14134.

KAPAJ, A.; DECI, E.; (primero): “World Milk Production and Socio-Economic Factors Effecting Its Consumption”, En: World Milk Production and Socio-Economic Factors Effecting Its Consumption, Ed. Elsevier, Inc., Ronald Ross Watson, Robert J. Collier, Victor R. Preedy (eds.), Dairy in Human Health and Disease Across the Lifespan, DOI: http://dx.doi.org/10.1016/B978-0-12-809868-4.00007-8, pp. 107-115, 2017, ISBN: 978-0-12-809868-4.

KAYGISIZ, F.; SEZGIN, F.H.: “Forecasting goat milk production in turkey using Artificial Neural Networks and Box-Jenkins models”, Animal Review, 4(3): 45-52, 2017, ISSN: 2412-3382, DOI: 10.18488/journal.ar.2017.43.45.52.

KIM, W.; WON, J.H.; PARK, S.; KANG, J.: “Demand Forecasting Models for Medicines through Wireless Sensor Networks Data and Topic Trend Analysis”, International Journal of Distributed Sensor Networks, 11(9): 1-6, 2015, ISSN: 1550-1477, DOI: https://doi.org/10.1155/2015/907169.

KINO, E.; KAWAKAMI, R.; MINAMINO, T.; MIKURINO, Y.; HORII, Y.; HONKAWA, K.; SASAKI, Y.: “Exploration of factors determining milk production by Holstein cows raised on a dairy farm in a temperate climate area”, Tropical Animal Health and Production, 51: 529-536, 2019, ISSN: 1573-7438, DOI: https://doi.org/10.1007/s11250-018-1720-6.

KOK, A.; VAN KNEGSEL, A.T.M.; VAN MIDDELAAR, C.E.; ENGEL, B.; HOGEVEEN, H.; KEMP, B.; DE BOER, I.J.M.: “Effect of dry period length on milk yield over multiple lactations”, Journal Dairy Science, 100(1): 739–749, 2017, ISSN: 0022-0302, DOI: https://doi.org/10.3168/jds.2016-10963.

KOURENTZES, N.; PETROPOULOS, F.: “Forecasting with multivariate temporal aggregation: The case of promotional modelling”, International Journal of Production Economics, 181(Part A): 145–153, 2016, ISSN: 0925-5273, DOI: https://doi.org/10.1016/j.ijpe.2015.09.011.

KUMAR, S.; HOODA, B.K.; (primero): “Comparison of penalized and multiple linear regression for prediction of milk yield in crossbred cattle”, Int. J. Agricult. Stat. Sci., 11(1): 151-154, 2015, ISSN: 0976-3392.

LEUNG, S.; FANG, X.; LONG, J.; LAI, K.: “Demand forecasting of perishable farm products using support vector machine”, International Journal of Systems Science, 44(3): 556–567, 2013, ISSN: 0020-7721, DOI: https://doi.org/10.1080/00207721.2011.617888.

MACHADO, G.; FIGUEIREDOA, D.M.; RESENDE, P.C.; DOS SANTOSA, R.A.; LACROIXC, R.; SANTSCHIC, D.; LEFEBVRE, D.M.: “Predicting first test day milk yield of dairy heifers”, Computers and Electronics in Agriculture, 166: 1-8, 2019, ISSN: 0168-1699, DOI: https://doi.org/10.1016/j.compag.2019.105032.

MARTÍNEZ, M.J.; TORRES, V.; HERNÁNDEZ, N.; JORDÁN, H.: “Impact index for the characterization of factors affecting milk production in farms of Ciego de Ávila province, Cuba”, Cuban Journal of Agricultural Science, 47(4): 367-673, 2013, ISSN: 0864-0408.

MARTÍNEZ, V.A.; RIBOT, E.A.; VILLOCH, C.A.; MONTES DE OCA, N.; REMÓN, D.D.; PONCE, C.P.: “Calidad e inocuidad de la leche cruda en las condiciones actuales de Cuba”, Revista. Salud Animal, 39(1): 51-61, 2017, ISSN: 0253-570X.

MOR, R.S.; JAISWAL, S.K.; SINGH, S.; BHARDWAJ, A.: “Demand Forecasting of the Short-Lifecycle Dairy Products”, [en línea], En: Understanding the Role of Business Analytics, Ed. Springer, H. Chahal et al. (eds.), Understanding the Role of Business Analytics ed., Singapore, pp. 87-117, 2018, Disponible en: doi.org/10.1007/978-981-13-1334-9_6.

MORALES, Z.E.: Modelo multivariado de predicción del stock de piezas de repuesto para equipos médicos, Universidad de las Ciencias Informáticas, Tesis de doctorado, La Habana, Cuba, 163 p., 2016.

MURPHY, M.D.; O’MAHONY, M.J.; SHALLOO, L.; FRENCH, P.; UPTON, J.: “Comparison of modeling techniques for milk-production forecasting”, Journal Dairy Science, 97(6): 3352–3363, 2014, ISSN: 0022-0302, DOI: https://doi.org/10.3168/jds.2013-7451.

NGUYEN, Q.T.; FOUCHEREAU, R.; FRÉNOD, E.; GERARD, C.; SINCHOLLE, V.: “Comparison of forecast models of production of dairy cows combining animal and diet parameters”, Computers and Electronics in Agriculture, 170, 2020, ISSN: 0168-1699, DOI: https://doi.org/10.1016/j.compag.2020.105258.

OCDE/FAO: OCDE-FAO Perspectivas Agrícolas 2017-2026, [en línea], Editions OCDE, París, Francia, 2017, Disponible en: http://dx.doi.org/10.1787/agr_outlook-2017-es.

OSCULLO, J.; HARO, L.: “Pronóstico de la Demanda Diaria del Sistema Nacional Interconectado Utilizando Redes Neuronales”, Revista Politécnica, 38(1): 77-82, 2016, ISSN: 1390-0129.

PALACIOS, A.; GONZÁLEZ, P.D.; GUERRA, D.; ESPINOZA, J.L.; ORTEGA, R.; GUILLÉN, A.; ÁVILA, N.: “Curvas de lactancia individuales en vacas Siboney de Cuba”, Revista Mexicana de Ciencias Pecuarias, 7(1): 15-28, 2016, ISSN: 2448-6698.

PALMATIER, R.; HOUSTON, M.; HULLAND, J.: “Review articles: Purpose, process and structure”, Journal of the Academy of Marketing Science, 46(1): 1-5, 2018, ISSN: 1552-7824, DOI: https://doi.org/10.1007/s11747-017-0563-4.

PAURA, P.; ARHIPOVA, I.: “Analysis of the milk production and milk price in Latvia”, Procedia Economics and Finance, 39: 39–43, 2016, ISSN: 2212-5671, DOI: https://doi.org/10.1016/S2212-5671(16)30238-6.

PEÑA, R.Y.F.; BENÍTEZ, D.; RAY, J.V.: “Factores determinantes de la producción ganadera en una comunidad campesina del suroeste de Holguín, Cuba”, Cuban Journal of Agricultural Science, 52(2): 1-9, 2018, ISSN: 0864-0408.

PERDIGÓN, R.: “Estrategia digital para fortalecer la gestión comercial de las cooperativas agropecuarias cubanas”, Cooperativismo y Desarrollo, 8(1): 33-44, 2020, ISSN: 2310-340X.

PEREIRA, C.; PEREIRA, C.R.; PUCHALSKI, W.; COELHO, L.; TORTATO, U.: “Demand forecasting based on natural computing approachs applied to the food stuff retail segment”, Journal of Retailing and Consumer Services, 31: 174–181, 2016, ISSN: 0969-6989, DOI: https://doi.org/10.1016/j.jretconser.2016.03.008.

QAMAR, M.; KHOSRAVI, A.: “A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings”, Renewable and Sustainable Energy Reviews, 50: 1352–1372, 2015, ISSN: 1364-0321, DOI: https://doi.org/10.1016/j.rser.2015.04.065.

SÁNCHEZ, L.; CABANAS, G.; ABAD, Y.; TORRES, V.: “Utilización de modelos ARIMA para la predicción de la producción de leche. Estudio de caso en la UBPC “Maniabo”, Las Tunas”, Revista Cubana de Ciencia Agrícola, 48(3): 213-218, 2014, ISSN: 0034-7485.

SÁNCHEZ, L.E.; BARRERAS, S.A.; PÉREZ, L.C.; FIGUEROA, S.F.; OLIVAS, V.J.A.: “Aplicación de un modelo ARIMA para pronosticar la producción de leche de bovino en Baja California, México”, Tropical and Subtropical Agroecosystems, 16(3): 315-324, 2013, ISSN: 1870-0462.

SHAHRIARY, G.; MIR, Y.: “Application of Artificial Neural Network Model in Predicting Price of Milk in Iran”, Modern Applied Science, 10(4): 173-178, 2016, ISSN: 1913-1844, DOI: http://dx.doi.org/10.5539/mas.v10n4p173.

SIVANANDAM, N.; AHRENS, D.: “A Hybrid Seasonal Autoregressive Integrated Moving Average and Quantile Regression for Daily Food Sales Forecasting”, International Journal of Production Economics, 170(Part A): 321-325, 2015, ISSN: 0925-5273, DOI: https://doi.org/10.1016/j.ijpe.2015.09.039.

SOMOZA, J.; FEBLES, J.M.; RANGEL, R.; SEDEÑO, E.; FIGUEREDO, E.; BRITO, O.: “Efecto del cambio climático en la producción de leche en entidades productivas del municipio Jimaguayú, provincia Camagüey”, Cuban Journal of Agricultural Science, 52(3): 1-13, 2018, ISSN: 0864-0408.

SOTO, S.S.A.; GUEVARA, V.R.V.; GUEVARA, V.G.E.; LOYOLA, O.C.J.; BERTOT, V.J.A.; SENRA, P.A.F.; CURBELO, R.L.M.: “Reflexiones acerca de la adopción y extensión de un modelo de producción de leche estacional en Camagüey, Cuba”, Pastos y Forrajes, 40(1): 3-15, 2017, ISSN: 2078-8452.

TIMANA, M.; ECHEVARRÍA, M.G.; M A; BUENDÍA, M.A.; CORDERO, A.C.: “Alimentar con cogollo de caña tratado hace más eficiente los costos de producción de leche en vacuno”, Agroindustrial Science, 7(2): 67 – 71, 2017, ISSN: 2226-2989, DOI: http://dx.doi.org/10.17268/agroind.sci.2017.02.02.

TUGAY, R.; GÜNDÜZ, S.: “6th International Conference on Data Science, Technology and Applications”, En: 6th International Conference on Data Science, Technology and Applications, Ed. DATA, vol. Volume 1, Madrid, España, pp. 216-222, 2017, DOI: 10.5220/0006431602160222, ISBN: 978-989-758-255-.

VERMA, A.; KARAN, A.; MATHUR, A.; CHETHAN, S.: “Analysis of Time Series Method for Demand Forecasting”, Journal of Engineering and Applied Sciences, 12(12): 3102-3107, 2017, ISSN: 1818-7803, DOI: http://dx.doi.org/10.36478/jeasci.2017.3102.3107.

YAN, W.J.; CHEN, X.; AKCAN, O.; LIM, J.; YANG, D.: “Big Data Analytics for Empowering Milk Yield Prediction in Dairy Supply Chains”, En: 2015 IEEE International Conference on Big Data (Big Data), pp. 2132-2137, 2015, DOI: https://doi.org/10.1109/BigData.2015.7363997.

ZHANG, F.; MURPHY, M.D.; SHALLOO, L.; RUELLE, E.; UPTON, J.: “An automatic model configuration and optimization system for milk production forecasting”, Computers and Electronics in Agriculture, 128: 100–111, 2016, ISSN: 0168-1699, DOI: https://doi.org/10.1016/j.compag.2016.08.016.

ZHANG, F.; UPTON, J.; SHALLOO, L.; MURPHY, M.D.: “Effect of parity weighting on milk production forecast models”, Computers and Electronics in Agriculture, 157: 589–603, 2019, ISSN: 0168-1699, DOI: https://doi.org/10.1016/j.compag.2018.12.051.

ZHANG, F.; UPTON, J.; SHALLOO, L.; SHINE, P.; MURPHY, M.D.: “Effect of introducing weather parameters on the accuracy of milk production forecast models”, Information Processing in Agriculture, 7(1): 120-138, 2020, ISSN: 2214-3173.