Estimación del rendimiento de maíz sembrado en suelo Ferralítico Rojo para el escenario climático SSP1-2.6
Contenido principal del artículo
Resumen
Los modelos dinámicos de simulación resultan herramientas indispensables en las investigaciones y el manejo agrícola. La modelación posibilita investigar las consecuencias de posibles escenarios futuros y permite prepararse para los cambios antes de que ocurran. El objetivo de este estudio es predecir los rendimientos del maíz en suelo Ferralítico Rojo en la región de Alquízar ante el escenario de cambio climático SSP1-2.6 de los modelos Hadgem3, Mpi-esm1 y Mri-esm2 con la utilización del modelo de simulación AquaCrop. Para la selección de los años hidrológicos se realizó el estudio de una serie de 28 años (2023–2050) para el periodo noviembre-abril (periodo de desarrollo de los cultivos) de cada modelo. Se evidencia la posibilidad de alcanzar en el maíz rendimientos potenciales de 8,6 t ha-1 y una productividad agronómica del agua de 3,08 kg m-3, si el cultivo no se somete a ningún tipo de limitación salvo la genética vegetal, la radiación solar y la temperatura, y las precipitaciones son suficiente en este periodo poco lluvioso. Si se aplica riego solo para garantizar la germinación de maíz bajo el escenario SSP1-2.6 los rendimientos se estiman en 4,4 t ha-1 y la biomasa en 14,6 t ha-1, lográndose una productividad de 2,37 kg m-3, con reducciones con respecto al rendimiento potencial de un 44%. El estudio comparativo de los rendimientos en el escenario de cambio climático SSP1-2.6 en los diferentes modelos demuestra la influencia de estas condiciones en la respuesta del cultivo. Los resultados muestran al modelo AquaCrop como una alternativa para evaluar el impacto del cambio climático en el rendimiento de los cultivos.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento-no comercial de Creative Commons 4.0 que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
Citas
Alarcón, A. L. D. (2015). Efecto del cambio climático en el rendimiento del cultivo de maíz amarillo duro bajo condiciones de La Molina utilizando el modelo Aquacrop [Eng. Thesis]. Universidad Agraria La Molina.
Castillo, Y., González, F., Hervis, G., Riverol, L. H., & Cisneros, E. (2020). Impacto del cambio climático en el rendimiento del maíz sembrado en suelo Ferralítico Rojo compactado. Ingeniería Agrícola, 10(1), 49-60, ISSN-2306-1545, e-ISSN-2227-8761, Publisher: Instituto de Investigaciones de Ingeniería Agrícola.
Cid, G., Bilir, T., González, F., Herrera, J., & Ruiz, M. E. (2011). Propiedades físicas de algunos suelos de Cuba y su uso en modelos de simulación. Revista Ciencias Técnicas Agropecuarias, 20(2), 42-46, ISSN: 1010-2760, e-ISSN: 2071-0054.
Díaz, Y., Villalobos, M., González, F., & Herrera, J. (2018). Validación del modelo AquaCrop en maíz (Zea mays L.) y sorgo (Sorgum vulgare L. Monech). Ingeniería Agrícola, 8(2), 3-10, ISSN-2306-1545, e-ISSN-2227-8761, Publisher: Instituto de Investigaciones de Ingeniería Agrícola.
Escoto, A., Sánchez, L., & Gachuz, S. (2017). Trayectorias Socioeconómicas Compartidas (SSP): Nuevas maneras de comprender el cambio climático y social. Estudios demográficos y urbanos, 32(3), 669-693, ISSN: 0186-7210, Publisher: El Colegio de México AC. http://dx.doi.org/10.24201/edu.v32i3.1684
Giralt, E. (1990). Informe final proyecto (p. 56). Instituto de Investigaciones de Riego y Drenaje (IIRD).
González, F., López, D., Cisneros, E., Herrera, J., & Cid, G. (2019). Calibración y análisis de sensibilidad del modelo Aquacrop para frijol en suelo Ferralítico Rojo Compactado. Ingeniería Agrícola, 9(4), 3-12, ISSN-2306-1545, e-ISSN-2227-8761, Publisher: Instituto de Investigaciones de Ingeniería Agrícola.
González, R. F., Herrera, P. J., López, S. T., & Cid, L. G. (2014). Productividad del agua en algunos cultivos agrícolas en Cuba. Revista Ciencias Técnicas Agropecuarias, 23(4), Article 4.
González, R. F., López, S. T., & Herrera, P. J. (2015). Indicadores de productividad del agua por cultivos y técnicas de riego en Cuba. Revista Ciencias Técnicas Agropecuarias, 24(4), Article 4.
Instituto de Meteorología-Cuba. (2023). Boletín Agro meteorológico Nacional. 27 al 41(1 al 36), Publisher: Instituto de Meteorología, La Habana, Cuba.
IPCC. (2021). Bases físicas. Resumen para responsables de políticas, Contribución del Grupo de Trabajo I al Sexto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático (pp. 40, ISBN: 978-92-9169-358-0) [Sexto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático].
Januta, A. (2021). Que significan los cinco futuros del informe de la ONU sobre el clima. Euronews. es.euronews.com
Lamm, F., Rogers, D., & Manges, H. (1994). Irrigation scheduling with planned soil water depletion. Transactions of the ASAE, 37(5), Article 5.
Morla, F., & Giayetto, O. (2012). Calibración y validación del modelo AquaCrop de FAO en cultivos representativos del centro sur de Córdoba. XIX Congreso Latinoamericano de la Ciencia del Suelo, Argentina.
Muñoz-Ortega, K. M. (2023). Modelando para la distribución espacial de Akodon mollis en los Andes ecuatorianos bajo escenarios de cambio climático [Tesis pregrado, Universidad Tecnológica Indoamérica, Quito, Ecuador]. http://repositorio.uti.edu.ec//handle //123456789/5500
Namuco, S. O., & O’Toole, C. J. (1986). Reproductive Stage Water Stress and Sterility. I. Effect of Stress during Meiosis 1. Crop Science, 26(2), Article 2.
OFA y CC. (2023). Observatorio de Frutos Amazónicos y Cambio climático. Escenarios bajo los modelos SSP y RCP (pp. 11-19). Observatorio de Frutos Amazónicos y Cambio climático. https://frutosamazonicos.org.bo
Otegui, M. E., Andrade, F. H., & Suero, E. E. (1995). Growth, water use, and kernel abortion of maize subjected to drought at silking. Field Crops Research, 40(2), Article 2.
Pérez, R., & Álvarez, M. (2005). Necesidades de Riego de la Caña de Azúcar en Cuba (Vol. 2). Academia.
Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2009). AquaCrop-The FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agronomy Journal, 101(3), Article 3.
Rodríguez, O., Florido, R., Hernández, N., Soto, F., Jeréz, E., González, D., & Vázquez, J. (2021). Simulation of management strategies from the DSSAT model to increase the yields of a corn cultivar. Cuban Journal of Agricultural Science, 55(2), ISSN: 2079-3480.
Steduto, P., Raes, D., Hsiao, T. C., & Fereres, E. (2012). Respuesta del rendimiento de los cultivos al agua. Estudio FAO Riego y Drenaje 66.
Tian, Z., Hanqing, X., Sun, L., Fan, D., Fischer, G., Zhong, H., Zhang, P., Pope, E., Kent, C., & Wu, W. (2020). Using a cross-scale simulation tool to assess future maize production under multiple climate change scenarios: An application to the Northeast Farming Region of China. Climate Services, 18, 100-150, ISSN: 2405-8807, Publisher: Elsevier. https://doi.org/10.1016/j. cliser.2020
Wani, S., Albrizio, R., & Vajja, N. (2012). Sorghum. Crop yield response to water. En Irrigation and drainage paper number, vol. 66. (Steduto, P., Hsiao, T. C., Fereres, E, Raes, D., pp. 144-151). FAO.