Hydrological Scenario of the Quilca-Vitor-Chili River Basin: Current and Future Estimates

Main Article Content

Maiquel López-Silva
Farid Gustabo Lobato-Arellano
Geraldine Susana Avellaneda-Castillo
Dayma Carmenates-Hernández

Resumo

The objective of the study was to estimate current and future hydrological scenarios in the Quilca-Vitor-Chili basin for both population and agricultural water demands. The methodological process involved collecting climatic and hydrological data from SENAMHI, as well as high-resolution Digital Elevation Model (DEM) data from NASA. The data were processed using the SWAT model for hydrological estimation. The model’s performance was evaluated using the coefficient of determination (R²), the Nash-Sutcliffe Efficiency index (NSE), and the Percent Bias (PBIAS). The hydrological scenario showed average annual streamflows of 11.54 m³/s for the year 2024, with a slight increase to 14.87 m³/s projected for 2040, based on a SWAT model validation with R² = 0.75, NSE = 0.72, and PBIAS = -18.4%. The analysis identified that both current and future hydrological scenarios exhibit water stress levels exceeding 80%, highlighting the urgent need to implement integrated water resources management strategies.

Article Details

Como Citar
López-Silva, M., Lobato-Arellano, F. G., Avellaneda-Castillo, G. S., & Carmenates-Hernández, D. (2025). Hydrological Scenario of the Quilca-Vitor-Chili River Basin: Current and Future Estimates. Revista Ciencias Técnicas Agropecuarias, 34, https://cu-id.com/2177/v34e40. Obtido de https://revistas.unah.edu.cu/index.php/rcta/article/view/2187
Secção
Artículos Originales

Referências

ABBASPOUR, K. C. (2013). SWAT-CUP 2013: SWAT Calibration and Uncertainty Programs-A User Manual. Swiss Federal Institute of Aquatic Science and Technology. https://www.scirp.org/reference/referencespapers?referenceid=3048706

ANA (2023) “Plan actualizado de gestión de recursos hídricos de la cuenca Quilca Chili, actualizado al 2023,” Repositorio Institucional - ANA, Accessed: Junio. 08, 2025. Available: https://repositorio.ana.gob.pe/handle/20.500.12543/5656

DOUGLAS-MANKIN, N. K. R., SRINIVASAN, N. R., & ARNOLD, N. J. G. (2010). Soil and Water Assessment Tool (SWAT) model: current developments and applications. Transactions of the ASABE, 53(5), 1423-1431. https://doi.org/10.13031/2013.34915

DRENKHAN, F., & CASTRO-SALVADOR, S. (2023). Una aproximación hacia la seguridad hídrica en los Andes tropicales: desafíos y perspectivas. Revista Kawsaypacha Sociedad Y Medio Ambiente, 12. https://doi.org/10.18800/kawsaypacha.202302.a006

AUTOR, G. AND QUIJANO, J. F. (2018) “Estudio hidrológico de las cuencas Camaná, Majes, Sihuas, Quilca - Vittor - Chili con información satelital,” Universidad Nacional Agraria La Molina. Accessed: Junio. 08, 2025. Available: https://hdl.handle.net/20.500.12996/3530

Ghajarnia, N., Bende-Michl, U., Sharples, W., Carrara, E., & Tijs, S. (2025). Evolving patterns of compound heat and water stress conditions: Implications for agriculture futures in Australia. Agricultural Water Management, 316, 109573. https://doi.org/10.1016/j.agwat.2025.109573

Guug, S. S., Abdul-Ganiyu, S., & Kasei, R. A. (2020). Application of SWAT hydrological model for assessing water availability at the Sherigu catchment of Ghana and Southern Burkina Faso. HydroResearch, 3, 124-133. https://doi.org/10.1016/j.hydres.2020.10.002

CARPIO, F. J., QUISPE, Y. B., PEÑA, L. F., AND SULCA, O. P. (2022) “Hidrogeología de la cuenca del río Quilca - Vitor - Chili (132)” Repositorio Institucional INGEMMET, Accessed: Junio. 08, 2025. Available: https://repositorio.ingemmet.gob.pe/handle/20.500.12544/3885

Juma, L. A., Nkongolo, N. V., Raude, J. M., & Kiai, C. (2022). Assessment of hydrological water balance in Lower Nzoia Sub-catchment using SWAT-model: towards improved water governace in Kenya. Heliyon, 8(7), e09799. https://doi.org/10.1016/j.heliyon.2022.e09799x

Krause, P., Boyle, D. P., & Bäse, F. (2005). Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5, 89-97. https://doi.org/10.5194/adgeo-5-89-2005

Moriasi, N. D. N., Arnold, N. J. G., Van Liew, N. M. W., Bingner, N. R. L., Harmel, N. R. D., & Veith, N. T. L. (2007). Model Evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900. https://doi.org/10.13031/2013.23153

Motschmann, A., Teutsch, C., Huggel, C., Seidel, J., León, C. D., Muñoz, R., Sienel, J., Drenkhan, F., & Weimer-Jehle, W. (2022). Current and future water balance for coupled human-natural systems - Insights from a glacierized catchment in Peru. Journal of Hydrology Regional Studies, 41, 101063. https://doi.org/10.1016/j.ejrh.2022.101063

Nevermann, H., Aminzadeh, M., Madani, K., & Shokri, N. (2024). Quantifying water evaporation from large reservoirs: Implications for water management in water-stressed regions. Environmental Research, 262, 119860. https://doi.org/10.1016/j.envres.2024.119860

Panda, C., Das, D. M., Sahoo, B. C., Panigrahi, B., & Singh, K. K. (2021). Spatio-temporal modeling of surface runoff in ungauged sub-catchments of Subarnarekha river basin using SWAT. MAUSAM, 72(3), 597-606. https://doi.org/10.54302/mausam.v72i3.1309

Ramos, D. R. L., & Delgado, E. F. B. (2022). Evaluación de la sostenibilidad de cuencas hidrográficas. Estudio de caso: Cuenca del Chili, Arequipa-Perú. Revista Alfa, 6(18), 453-462. https://doi.org/10.33996/revistaalfa.v6i18.182

SRTM | Datos terrestres de la NASA.” Accessed: Jun. 08, 2025. Available: https://www.earthdata.nasa.gov/data/instruments/srtm

Tran, T., Nguyen, B. Q., Vo, N. D., Le, M., Nguyen, Q., Lakshmi, V., & Bolten, J. D. (2022). Quantification of global Digital Elevation Model (DEM) - A case study of the newly released NASADEM for a river basin in Central Vietnam. Journal of Hydrology Regional Studies, 45, 101282. https://doi.org/10.1016/j.ejrh.2022.101282

Visera SIG - Balance hídrico de SENAMHI. Accessed: Jun. 08, 2025. Available: https://idesep.senamhi.gob.pe/balance-hidrico/

Weber, J. F., & Ocampo, S. B. (2019). Calibración del modelo hidrológico SWAT para una cuenca de la región serrana de Córdoba (Argentina). AQUA-LAC, 11(1), 34-54. https://doi.org/10.29104/phi-aqualac/2019-v11-1-03

Artigos mais lidos do(s) mesmo(s) autor(es)

1 2 > >>