Hydrological Scenario of the Quilca-Vitor-Chili River Basin: Current and Future Estimates
Main Article Content
Abstract
The objective of the study was to estimate current and future hydrological scenarios in the Quilca-Vitor-Chili basin for both population and agricultural water demands. The methodological process involved collecting climatic and hydrological data from SENAMHI, as well as high-resolution Digital Elevation Model (DEM) data from NASA. The data were processed using the SWAT model for hydrological estimation. The model’s performance was evaluated using the coefficient of determination (R²), the Nash-Sutcliffe Efficiency index (NSE), and the Percent Bias (PBIAS). The hydrological scenario showed average annual streamflows of 11.54 m³/s for the year 2024, with a slight increase to 14.87 m³/s projected for 2040, based on a SWAT model validation with R² = 0.75, NSE = 0.72, and PBIAS = -18.4%. The analysis identified that both current and future hydrological scenarios exhibit water stress levels exceeding 80%, highlighting the urgent need to implement integrated water resources management strategies.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Those authors that have publications with this journal accept the following terms:
1. They will retain their copyright and guarantee the journal the right of first publication of their work, which will be simultaneously subject to the License Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows third parties to share the work whenever its author is indicated and its first publication this journal. Under this license the author will be free of:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
• NonCommercial — You may not use the material for commercial purposes.
• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
2. The authors may adopt other non-exclusive license agreements to distribute the published version of the work (e.g., deposit it in an institutional telematics file or publish it in a monographic volume) whenever the initial publication is indicated in this journal.
3. The authors are allowed and recommended disseminating their work through the Internet (e.g. in institutional telematics archives or on their website) before and during the submission process, which can produce interesting exchanges and increase the citations of the published work. (See the Effect of open access).
References
ABBASPOUR, K. C. (2013). SWAT-CUP 2013: SWAT Calibration and Uncertainty Programs-A User Manual. Swiss Federal Institute of Aquatic Science and Technology. https://www.scirp.org/reference/referencespapers?referenceid=3048706
ANA (2023) “Plan actualizado de gestión de recursos hídricos de la cuenca Quilca Chili, actualizado al 2023,” Repositorio Institucional - ANA, Accessed: Junio. 08, 2025. Available: https://repositorio.ana.gob.pe/handle/20.500.12543/5656
DOUGLAS-MANKIN, N. K. R., SRINIVASAN, N. R., & ARNOLD, N. J. G. (2010). Soil and Water Assessment Tool (SWAT) model: current developments and applications. Transactions of the ASABE, 53(5), 1423-1431. https://doi.org/10.13031/2013.34915
DRENKHAN, F., & CASTRO-SALVADOR, S. (2023). Una aproximación hacia la seguridad hídrica en los Andes tropicales: desafíos y perspectivas. Revista Kawsaypacha Sociedad Y Medio Ambiente, 12. https://doi.org/10.18800/kawsaypacha.202302.a006
AUTOR, G. AND QUIJANO, J. F. (2018) “Estudio hidrológico de las cuencas Camaná, Majes, Sihuas, Quilca - Vittor - Chili con información satelital,” Universidad Nacional Agraria La Molina. Accessed: Junio. 08, 2025. Available: https://hdl.handle.net/20.500.12996/3530
Ghajarnia, N., Bende-Michl, U., Sharples, W., Carrara, E., & Tijs, S. (2025). Evolving patterns of compound heat and water stress conditions: Implications for agriculture futures in Australia. Agricultural Water Management, 316, 109573. https://doi.org/10.1016/j.agwat.2025.109573
Guug, S. S., Abdul-Ganiyu, S., & Kasei, R. A. (2020). Application of SWAT hydrological model for assessing water availability at the Sherigu catchment of Ghana and Southern Burkina Faso. HydroResearch, 3, 124-133. https://doi.org/10.1016/j.hydres.2020.10.002
CARPIO, F. J., QUISPE, Y. B., PEÑA, L. F., AND SULCA, O. P. (2022) “Hidrogeología de la cuenca del río Quilca - Vitor - Chili (132)” Repositorio Institucional INGEMMET, Accessed: Junio. 08, 2025. Available: https://repositorio.ingemmet.gob.pe/handle/20.500.12544/3885
Juma, L. A., Nkongolo, N. V., Raude, J. M., & Kiai, C. (2022). Assessment of hydrological water balance in Lower Nzoia Sub-catchment using SWAT-model: towards improved water governace in Kenya. Heliyon, 8(7), e09799. https://doi.org/10.1016/j.heliyon.2022.e09799x
Krause, P., Boyle, D. P., & Bäse, F. (2005). Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5, 89-97. https://doi.org/10.5194/adgeo-5-89-2005
Moriasi, N. D. N., Arnold, N. J. G., Van Liew, N. M. W., Bingner, N. R. L., Harmel, N. R. D., & Veith, N. T. L. (2007). Model Evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900. https://doi.org/10.13031/2013.23153
Motschmann, A., Teutsch, C., Huggel, C., Seidel, J., León, C. D., Muñoz, R., Sienel, J., Drenkhan, F., & Weimer-Jehle, W. (2022). Current and future water balance for coupled human-natural systems - Insights from a glacierized catchment in Peru. Journal of Hydrology Regional Studies, 41, 101063. https://doi.org/10.1016/j.ejrh.2022.101063
Nevermann, H., Aminzadeh, M., Madani, K., & Shokri, N. (2024). Quantifying water evaporation from large reservoirs: Implications for water management in water-stressed regions. Environmental Research, 262, 119860. https://doi.org/10.1016/j.envres.2024.119860
Panda, C., Das, D. M., Sahoo, B. C., Panigrahi, B., & Singh, K. K. (2021). Spatio-temporal modeling of surface runoff in ungauged sub-catchments of Subarnarekha river basin using SWAT. MAUSAM, 72(3), 597-606. https://doi.org/10.54302/mausam.v72i3.1309
Ramos, D. R. L., & Delgado, E. F. B. (2022). Evaluación de la sostenibilidad de cuencas hidrográficas. Estudio de caso: Cuenca del Chili, Arequipa-Perú. Revista Alfa, 6(18), 453-462. https://doi.org/10.33996/revistaalfa.v6i18.182
SRTM | Datos terrestres de la NASA.” Accessed: Jun. 08, 2025. Available: https://www.earthdata.nasa.gov/data/instruments/srtm
Tran, T., Nguyen, B. Q., Vo, N. D., Le, M., Nguyen, Q., Lakshmi, V., & Bolten, J. D. (2022). Quantification of global Digital Elevation Model (DEM) - A case study of the newly released NASADEM for a river basin in Central Vietnam. Journal of Hydrology Regional Studies, 45, 101282. https://doi.org/10.1016/j.ejrh.2022.101282
Visera SIG - Balance hídrico de SENAMHI. Accessed: Jun. 08, 2025. Available: https://idesep.senamhi.gob.pe/balance-hidrico/
Weber, J. F., & Ocampo, S. B. (2019). Calibración del modelo hidrológico SWAT para una cuenca de la región serrana de Córdoba (Argentina). AQUA-LAC, 11(1), 34-54. https://doi.org/10.29104/phi-aqualac/2019-v11-1-03