Validation of Spectral Moisture Indexes Using Landsat 8 OLI/TIRS Images in a Vertisol
Main Article Content
Resumo
Remote sensing is a geomatic tool that has been used to determine soil moisture, a very important physical property in studies related to agricultural production. Particularly, the Vertisol present distinctive characteristics to other groupings of soils in Cuba in relation to water retention and the change of their properties. The objective of the research was validating the use of spectral moisture indexes through Landsat 8 OLI/TIRS images in a Vertisol. An area under natural grass, sugarcane and secondary forest of the Provincial Sugarcane Research Station in Guaro, Holguín was chosen. Three georeferenced random sampling points were established for each land use up to a depth of 30.0 cm, for the determination of gravimetric moisture, which was related by means of linear regression analysis with the spectral indexes of moisture and the calculation of parameters for validation. The use of remote sensing showed in the thematic maps obtained from the estimation of moisture with the different spectral indexes, the presence of homogeneous zones and their spatial variability in the moisture state of the Vertisol under the three land uses. ENDWI, MSI and EMSI indexes indicated a better estimation in the statistics used for the validation of the values obtained by remote sensing and in situ sampling of moisture, according to research related to the subject.
Article Details
Este trabalho encontra-se publicado com a Creative Commons Atribuição-NãoComercial 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
Referências
ALEXAKIS, D.D.; MEXIS, F.D.K.; VOZINAKI, A.E.K.; DALIAKOPOULOS, I.N.; TSANIS, I.K.: “Soil moisture content estimation based on Sentinel-1 and auxiliary earth observation products. A hydrological approach”, Sensors, 17(6): 1-16, 2017, ISSN: 1424-8220, Publisher: MDPI, DOI: https://doi.org/10.3390/s17061455.
AMANI, M.; PARSIAN, S.; MIRMAZLOUMI, S.M.; AIENEH, O.: “Two new soil moisture indices based on the NIR-red triangle space of Landsat-8 data”, International Journal of Applied Earth Observation and Geoinformation, 50: 176-186, 2016, ISSN: 0303-2434, Publisher: Elsevier, DOI: http://dx.doi.org/10.1016/j.jag.2016.03.018.
BAO, Y.; LIN, L.; WU, S.; DENG, K.A.K.; PETROPOULOS, G.P.: “Surface soil moisture retrievals over partially vegetated areas from the synergy of Sentinel-1 and Landsat 8 data using a modified water-cloud model”, International journal of applied earth observation and geoinformation, 72: 76-85, 2018, ISSN: 1569-8432, Publisher: Elsevier, DOI: https://doi.org/10.1016/j.jag.2018.05.026.
CHAMPAGNE, C.; ROWLANDSON, T.; BERG, A.; BURNS, T.; L’HEUREUX, J.; TETLOCK, E.; ADAMS, J.R.; AHMADI, H.; TOTH, B.; ITENFISU, D.: “Satellite surface soil moisture from SMOS and Aquarius: Assessment for applications in agricultural landscapes”, International journal of applied earth observation and geoinformation, 45: 143-154, 2016, ISSN: 1569-8432, Publisher: Elsevier, DOI: https://doi.org/10.1016/j.jag.2015.09.004.
CHEN, D.; HUANG, J.; JACKSON, T.J.: “Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near-and short-wave infrared bands”, Remote Sensing of Environment, 98(2-3): 225-236, 2005, ISSN: 0034-4257, Publisher: Elsevier.
CID, L.G.; HERRERA, P.J.; LÓPEZ, S.T.; GONZÁLEZ, R.F.: “Resultados de algunas investigaciones en suelos Vérticos de Cuba”, Revista Ingeniería Agrícola, 6(2): 51-56, 2016, ISSN: 2227-8761.
CUMBRERA-GONZÁLEZ, R.A.; ROMAGOSA, W.; MILLÁN, H.; SORIA, A.; GASKIN, B.: “Estimación de la dependencia espacial del contenido de humedad de un vertisol”, Revista Ingeniería Agrícola, 5(2): 16-22, 2015, ISSN: 2227-8761.
DOMÍNGUEZ, J.; KUMHÁLOVÁ, J.; NOVÁK, P.: “Assessment of the relationship between spectral indices from satellite remote sensing and winter oilseed rape yield”, Agron. Res, 15(1): 55-68, 2017.
HERNÁNDEZ, J.A.: “Área que ocupan los agrupamientos y tipos genéticos de los suelos en Cuba”, Cultivos tropicales, 42(3), 2021, ISSN: 0258-5936, Publisher: Ediciones INCA.
HERNÁNDEZ, J.A.; PÉREZ, J.J.M.; MESA, N.A.; BOSCH, I.D.; RIVERO, L.; CAMACHO, E.: Nueva versión de la clasificación genética de los suelos de Cuba., Ed. AGRINFOR, La Habana, Cuba, ISBN: 959-246-022-1, Barcaz L L ed., vol. I, La Habana, Cuba, 93 p., 2015, ISBN: 959-246-022-1.
HERNÁNDEZ-PEREIRA, Y.; MEDINA-GONZÁLEZ, H.: “Estimación de la humedad del suelo mediante técnicas de asimilación de datos”, Revista Ciencias Técnicas Agropecuarias, 21(4): 30-35, 2012, ISSN: 2071-0054, Publisher: Universidad Agraria de La Habana.
HWAN, S.; HEON, D.; HOON, J.: “A new measure for assessing the efficiency of hydrological data-driven forecasting models”, Hydrological Sciences Journal, 57(7): 1257-1274, 2012, DOI: https://doi.org/10.1080/02626667.2012.710335.
JALILVAND, E.; TAJRISHY, M.; HASHEMI, S.A.; BROCCA, L.: “Quantification of irrigation water using remote sensing of soil moisture in a semi-arid region”, Remote Sensing of Environment, 231: 111226, 2019, ISSN: 0034-4257, Publisher: Elsevier.
MOHAMMADI, A.; COSTELLOE, J.F.; RYU, D.: “Application of time series of remotely sensed normalized difference water, vegetation and moisture indices in characterizing flood dynamics of large-scale arid zone floodplains”, Remote sensing of environment, 190: 70-82, 2017, ISSN: 0034-4257, Publisher: Elsevier, DOI: http://dx.doi.org/10.1016/j.rse.2016.12.003.
QIU, J.; CROW, W.T.; WAGNER, W.; ZHAO, T.: “Effect of vegetation index choice on soil moisture retrievals via the synergistic use of synthetic aperture radar and optical remote sensing”, International Journal of Applied Earth Observation and Geoinformation, 80: 47-57, 2019, ISSN: 1569-8432, Publisher: Elsevier, DOI: https://doi.org/10.1016/j.jag.2019.03.015. 14. QIU, JIANXIU.; CROW, WADE.; W.
SILVA, R.F.; ALBUQUERQUE, J.A.; DA COSTA, A.; FONTOURA, S.M.; BAYER, C.; WARMLING, M.I.C.: “Physical properties of a Hapludox after three decades under different soil management systems”, Revista Brasileira de Ciência do Solo, 40: 1-14, 2016, ISSN: 1806-9657, Publisher: SciELO Brasil, DOI: https://doi.org/10.1590/18069657rbcs20140331.
SINGH, K.; KUMAR, S.; KUMAR, R.: “Synergetic methodology for estimation of soil moisture over agricultural area using Landsat-8 and Sentinel-1 satellite data”, Remote Sensing Applications: Society and Environment, 15: 1-8, 2019, ISSN: 2352-9385, Publisher: Elsevier, DOI: http://dx.doi.org/10.1016/j.rsase.2019.100250.
WILSON, M.; CERANA, J.: “Mediciones físicas en suelos con características vérticas”, Revista Científica Agropecuaria, 8(1): 11-22, 2004, ISSN: 0329-3602.
ZHAN, Z.; QIN, Q.; GHULAN, A.; WANG, D.: “NIR-red spectral space based new method for soil moisture monitoring”, Science in China Series D: Earth Sciences, 50(2): 283-289, 2007, ISSN: 1006-9313, Publisher: Springer, DOI: https://doi.org/10.1007/s11430-007-2004-6.
ZHANG, J.; ZHOU, Z.; YAO, F.; YANG, L.; HAO, C.: “Validating the modified perpendicular drought index in the North China region using in situ soil moisture measurement”, IEEE Geoscience and Remote Sensing Letters, 12(3): 542-546, 2014, ISSN: 1545-598X, Publisher: IEEE, DOI: http://dx.doi.org/10.1109/LGRS.2014.2349957.