Estimation of the electrical conductivity of the soil from spectral information in the cultivation of rice (Oryza sativa L.)

Roberto Alejandro García-Reyes, Mario Damian González Posada-Dacosta, Juan Alejandro Villazón-Gómez, Sergio Rodríguez-Rodríguez


The salinity of the soil constitutes today one of the main degradation processes that affects the lands under irrigation; and especially the production of rice. The objective of the research was to estimate the electrical conductivity of the soil by means of spectral information in the cultivation of rice in the Mayarí municipality, Holguín. The research was developed on a Chromic Vertisol, which are the most prone in the territory to trigger degradation processes such as salinity, given by management practices in rice cultivation. Two semi-empirical models proposed from different spectral indices were used, the NDSI and the IS, which were calculated in the QGis 3.10 software with multispectral images from the Landsat 8 OLI / TIRS sensor. The NDSI and the SI-ASTER showed the lowest determination and negative correlation in both models. The SI and the SI-ASTER produce an overestimation of the electrical conductivity values of the soil (EC ≥ 100%), the NDSI, SSSI.1 and SSSI.2 indicate a moderate content of salts in the soil (EC 20% ˂ EC ≤ 40%). Although the use of spectral salinity indices yielded a high determination, the SI and the SI-ASTER indicated an overestimation of the electrical conductivity existing in the soil, which could be due to the presence of a saturation of the signal captured by the sensor and reflected in the indices obtained, which exceeded the values in which the saline index oscillates.


Saline Index; Salinity; Remote Sensing

Full Text:



ALI, S.K.; ALI, S.A.; WU, Y.; ABBASI, B.; ALPI, F.G.; ALI, L.I.; ZHOU, G.: ¨An assessment of the spatial and temporal distribution of soil salinity in combination with field and satellite data: a case study in Sujawal District¨, [en línea] Agronomy, DOI-, 9(12): 869, 2019.

AL-KHAIER, F.: Soil salinity detection using satellite remotes sensing, 61pp., Master’s Thesis, International institute for Geoinformation Science and Earth Observation, Enschede, The Netherlands, 2003.

ALLBED, A.; KUMAR, L.; ALDAKHEEL, Y.Y.: ¨Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region¨, [en línea] Geoderma, ISSN-0016-7061, DOI-, 230: 1-8, 2014.

AYERS, R.S.; WESTCOT, D.W.: Water quality for agriculture, Ed. Food and Agriculture Organization of the United Nations Rome, vol. 29, ISBN-92-5-102263-1, 1985.

BALAKRISHNAN, P.; SALEEM, A.; MALLIKARJUN, N.: ¨Groundwater quality mapping using geographic information system (GIS): A case study of Gulbarga City, Karnataka, India¨, [en línea] African Journal of Environmental Science and Technology, ISSN-1996-0786, DOI-, 5(12): 1069-1084, 2011.

BANNARI, A.; GUÉDON, A.; EL-GHMARI, A.: ¨Mapping slight and moderate saline soils in irrigated agricultural land using advanced land imager sensor (EO-1) data and semi-empirical models¨, [en línea] Communications in Soil Science and Plant Analysis, ISSN-0010-3624, DOI-, 47(16): 1883-1906, 2016.

BANNARI, A.: GUEDON, A.; EL-HARTI, A.; CHERKAOUI, F.; EL-GHMARI, A.; SAQUAQUE, A.: ¨Slight and moderate saline and sodic soils characterization in irrigated agricultural land using multispectral remote sensing¨, [en línea] International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, DOI-, 34(Part XXX), 2009.

DING, J.; YU, D.: ¨Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan–Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments¨, [en línea] Geoderma, ISSN-0016-7061, DOI-, 235: 316-322, 2014.

EL-BATTAY, A.; BANNARI, A.; HAMEID, N.; ABAHUSSAIN, A.: ¨Comparative study among different semi-empirical models for soil salinity prediction in an arid environment using OLI Landsat-8 data¨, [en línea] Advances in Remote Sensing, DOI-DOI:, 6(01): 23, 2017.

ELHAG, M.: ¨Evaluation of different soil salinity mapping using remote sensing techniques in arid ecosystems, Saudi Arabia¨, [en línea] Journal of Sensors, ISSN-1687-725X, DOI-, 2016, 2016.

HARTI, E.A.; LHISSOU, R.; CHOKMANI, K.; OUZEMOU, J.-E.; HASSOUNA, M.; BACHAOUI, E.M.; EL GHMARI, A.: ¨Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices¨, [en línea] International Journal of Applied Earth Observation and Geoinformation, ISSN-0303-2434, DOI-, 50: 64-73, 2016.

HOWARI, F.; GOODELL, P.; MIYAMOTO, S.: ¨Spectral properties of salt crusts formed on saline soils¨, [en línea] Journal of Environmental Quality, ISSN-0047-2425, DOI-, 31(5): 1453-1461, 2002.

KHAN, N.; RASTOSKUEV, V.; SHALINA, E.; SATO, Y.: ¨Mapping salt-affected soils using remote sensing indicators a simple approach with the use of GIS IDRISI¨, En: 22nd Asian Conference on Remote Sensing, Center for Remote Imaging, sensing and Processing (CRISP), National University of Singapore; Singapore, pp. 5, Singapore, 2001.

KUMAR, N.; SINGH, S.K.; PANDEY, H.: ¨Drainage morphometric analysis using open access earth observation datasets in a drought-affected part of Bundelkhand, India¨, [en línea] Applied Geomatics, ISSN-1866-928X, DOI-, 10(3): 173-189, 2018.

MA, Z.; SHI, Z.; ZHOU, Y.; XU, J.; YU, W.; YANG, Y.: ¨A spatial data mining algorithm for downscaling TMPA 3B43 V7 data over the Qinghai–Tibet Plateau with the effects of systematic anomalies removed¨, [en línea] Remote Sensing of Environment, ISSN-0034-4257, DOI-, 200: 378-395, 2017.

MASHIMBYE, Z.E.: Remote sensing of salt-affected soil, 151pp., Ph.D. Thesis, Stellenbosch University, Faculty of AgriSciences, Stellenbosch, South Africa, 2013.

PUJOL, O.R.; HERRERA, P.J.; CID, L.G.; ALARCÓN, L.R.; LÓPEZ, C.G.: ¨Evaluación del funcionamiento hidráulico del drenaje soterrado en áreas arroceras de la zona norte de la provincia Granma, Cuba¨, Revista Ciencias Técnicas Agropecuarias, ISSN-1010-2760, e-ISSN: 2071-0054, 18(3): 30-34, 2009.

SCUDIERO, E.; SKAGGS, T.H.; CORWIN, D.L.: ¨Regional-scale soil salinity assessment using Landsat ETM+ canopy reflectance¨, [en línea] Remote Sensing of Environment, ISSN-0034-4257, DOI-, 169: 335-343, 2015.

SIDIKE, A.; ZHAO, S.; WEN, Y.: ¨Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra¨, [en línea] International Journal of Applied Earth Observation and Geoinformation, ISSN-0303-2434, DOI-, 26: 156-175, 2014.

TAYLOR, S.: Dryland salinity: introductory extension notes, Ed. Department of Land and Water Conservation, pp. 63, ISBN-978-0-7310-1124-7, Sydney, Australia, 1993.

UNITED STATE OF GEOLOGICAL SURVEY: ¨Landsat Earth observation satellites: U.S. Geological Survey Fact Sheet 2015–3081¨, [en línea] DOI-, 4, 2016.

ZAMAN, M.; SHAHID, S.A.; HENG, L.: Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques, Ed. Springer: New York, vol. 3, pp. 43-53, ISBN-978-3-319-96190-3, NY, USA, 2018.


  • There are currently no refbacks.