Validation of Spectral Moisture Indexes Using Landsat 8 OLI/TIRS Images in a Vertisol
Main Article Content
Abstract
Remote sensing is a geomatic tool that has been used to determine soil moisture, a very important physical property in studies related to agricultural production. Particularly, the Vertisol present distinctive characteristics to other groupings of soils in Cuba in relation to water retention and the change of their properties. The objective of the research was validating the use of spectral moisture indexes through Landsat 8 OLI/TIRS images in a Vertisol. An area under natural grass, sugarcane and secondary forest of the Provincial Sugarcane Research Station in Guaro, Holguín was chosen. Three georeferenced random sampling points were established for each land use up to a depth of 30.0 cm, for the determination of gravimetric moisture, which was related by means of linear regression analysis with the spectral indexes of moisture and the calculation of parameters for validation. The use of remote sensing showed in the thematic maps obtained from the estimation of moisture with the different spectral indexes, the presence of homogeneous zones and their spatial variability in the moisture state of the Vertisol under the three land uses. ENDWI, MSI and EMSI indexes indicated a better estimation in the statistics used for the validation of the values obtained by remote sensing and in situ sampling of moisture, according to research related to the subject.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Those authors that have publications with this journal accept the following terms:
1. They will retain their copyright and guarantee the journal the right of first publication of their work, which will be simultaneously subject to the License Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows third parties to share the work whenever its author is indicated and its first publication this journal. Under this license the author will be free of:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
• NonCommercial — You may not use the material for commercial purposes.
• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
2. The authors may adopt other non-exclusive license agreements to distribute the published version of the work (e.g., deposit it in an institutional telematics file or publish it in a monographic volume) whenever the initial publication is indicated in this journal.
3. The authors are allowed and recommended disseminating their work through the Internet (e.g. in institutional telematics archives or on their website) before and during the submission process, which can produce interesting exchanges and increase the citations of the published work. (See the Effect of open access).
References
ALEXAKIS, D.D.; MEXIS, F.D.K.; VOZINAKI, A.E.K.; DALIAKOPOULOS, I.N.; TSANIS, I.K.: “Soil moisture content estimation based on Sentinel-1 and auxiliary earth observation products. A hydrological approach”, Sensors, 17(6): 1-16, 2017, ISSN: 1424-8220, Publisher: MDPI, DOI: https://doi.org/10.3390/s17061455.
AMANI, M.; PARSIAN, S.; MIRMAZLOUMI, S.M.; AIENEH, O.: “Two new soil moisture indices based on the NIR-red triangle space of Landsat-8 data”, International Journal of Applied Earth Observation and Geoinformation, 50: 176-186, 2016, ISSN: 0303-2434, Publisher: Elsevier, DOI: http://dx.doi.org/10.1016/j.jag.2016.03.018.
BAO, Y.; LIN, L.; WU, S.; DENG, K.A.K.; PETROPOULOS, G.P.: “Surface soil moisture retrievals over partially vegetated areas from the synergy of Sentinel-1 and Landsat 8 data using a modified water-cloud model”, International journal of applied earth observation and geoinformation, 72: 76-85, 2018, ISSN: 1569-8432, Publisher: Elsevier, DOI: https://doi.org/10.1016/j.jag.2018.05.026.
CHAMPAGNE, C.; ROWLANDSON, T.; BERG, A.; BURNS, T.; L’HEUREUX, J.; TETLOCK, E.; ADAMS, J.R.; AHMADI, H.; TOTH, B.; ITENFISU, D.: “Satellite surface soil moisture from SMOS and Aquarius: Assessment for applications in agricultural landscapes”, International journal of applied earth observation and geoinformation, 45: 143-154, 2016, ISSN: 1569-8432, Publisher: Elsevier, DOI: https://doi.org/10.1016/j.jag.2015.09.004.
CHEN, D.; HUANG, J.; JACKSON, T.J.: “Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near-and short-wave infrared bands”, Remote Sensing of Environment, 98(2-3): 225-236, 2005, ISSN: 0034-4257, Publisher: Elsevier.
CID, L.G.; HERRERA, P.J.; LÓPEZ, S.T.; GONZÁLEZ, R.F.: “Resultados de algunas investigaciones en suelos Vérticos de Cuba”, Revista Ingeniería Agrícola, 6(2): 51-56, 2016, ISSN: 2227-8761.
CUMBRERA-GONZÁLEZ, R.A.; ROMAGOSA, W.; MILLÁN, H.; SORIA, A.; GASKIN, B.: “Estimación de la dependencia espacial del contenido de humedad de un vertisol”, Revista Ingeniería Agrícola, 5(2): 16-22, 2015, ISSN: 2227-8761.
DOMÍNGUEZ, J.; KUMHÁLOVÁ, J.; NOVÁK, P.: “Assessment of the relationship between spectral indices from satellite remote sensing and winter oilseed rape yield”, Agron. Res, 15(1): 55-68, 2017.
HERNÁNDEZ, J.A.: “Área que ocupan los agrupamientos y tipos genéticos de los suelos en Cuba”, Cultivos tropicales, 42(3), 2021, ISSN: 0258-5936, Publisher: Ediciones INCA.
HERNÁNDEZ, J.A.; PÉREZ, J.J.M.; MESA, N.A.; BOSCH, I.D.; RIVERO, L.; CAMACHO, E.: Nueva versión de la clasificación genética de los suelos de Cuba., Ed. AGRINFOR, La Habana, Cuba, ISBN: 959-246-022-1, Barcaz L L ed., vol. I, La Habana, Cuba, 93 p., 2015, ISBN: 959-246-022-1.
HERNÁNDEZ-PEREIRA, Y.; MEDINA-GONZÁLEZ, H.: “Estimación de la humedad del suelo mediante técnicas de asimilación de datos”, Revista Ciencias Técnicas Agropecuarias, 21(4): 30-35, 2012, ISSN: 2071-0054, Publisher: Universidad Agraria de La Habana.
HWAN, S.; HEON, D.; HOON, J.: “A new measure for assessing the efficiency of hydrological data-driven forecasting models”, Hydrological Sciences Journal, 57(7): 1257-1274, 2012, DOI: https://doi.org/10.1080/02626667.2012.710335.
JALILVAND, E.; TAJRISHY, M.; HASHEMI, S.A.; BROCCA, L.: “Quantification of irrigation water using remote sensing of soil moisture in a semi-arid region”, Remote Sensing of Environment, 231: 111226, 2019, ISSN: 0034-4257, Publisher: Elsevier.
MOHAMMADI, A.; COSTELLOE, J.F.; RYU, D.: “Application of time series of remotely sensed normalized difference water, vegetation and moisture indices in characterizing flood dynamics of large-scale arid zone floodplains”, Remote sensing of environment, 190: 70-82, 2017, ISSN: 0034-4257, Publisher: Elsevier, DOI: http://dx.doi.org/10.1016/j.rse.2016.12.003.
QIU, J.; CROW, W.T.; WAGNER, W.; ZHAO, T.: “Effect of vegetation index choice on soil moisture retrievals via the synergistic use of synthetic aperture radar and optical remote sensing”, International Journal of Applied Earth Observation and Geoinformation, 80: 47-57, 2019, ISSN: 1569-8432, Publisher: Elsevier, DOI: https://doi.org/10.1016/j.jag.2019.03.015. 14. QIU, JIANXIU.; CROW, WADE.; W.
SILVA, R.F.; ALBUQUERQUE, J.A.; DA COSTA, A.; FONTOURA, S.M.; BAYER, C.; WARMLING, M.I.C.: “Physical properties of a Hapludox after three decades under different soil management systems”, Revista Brasileira de Ciência do Solo, 40: 1-14, 2016, ISSN: 1806-9657, Publisher: SciELO Brasil, DOI: https://doi.org/10.1590/18069657rbcs20140331.
SINGH, K.; KUMAR, S.; KUMAR, R.: “Synergetic methodology for estimation of soil moisture over agricultural area using Landsat-8 and Sentinel-1 satellite data”, Remote Sensing Applications: Society and Environment, 15: 1-8, 2019, ISSN: 2352-9385, Publisher: Elsevier, DOI: http://dx.doi.org/10.1016/j.rsase.2019.100250.
WILSON, M.; CERANA, J.: “Mediciones físicas en suelos con características vérticas”, Revista Científica Agropecuaria, 8(1): 11-22, 2004, ISSN: 0329-3602.
ZHAN, Z.; QIN, Q.; GHULAN, A.; WANG, D.: “NIR-red spectral space based new method for soil moisture monitoring”, Science in China Series D: Earth Sciences, 50(2): 283-289, 2007, ISSN: 1006-9313, Publisher: Springer, DOI: https://doi.org/10.1007/s11430-007-2004-6.
ZHANG, J.; ZHOU, Z.; YAO, F.; YANG, L.; HAO, C.: “Validating the modified perpendicular drought index in the North China region using in situ soil moisture measurement”, IEEE Geoscience and Remote Sensing Letters, 12(3): 542-546, 2014, ISSN: 1545-598X, Publisher: IEEE, DOI: http://dx.doi.org/10.1109/LGRS.2014.2349957.