Remote Sensing of Salinity in Agroecosystem of Mayarí, at Holguín Province, Cuba

Main Article Content

Roberto Alejandro García-Reyes
Mario Damián González Posada-Dacosta
Kenier Torres-Calzado
Juan Alejandro Villazón-Gómez
Miguel Ignacio Abellón-MolinaI
Elianne Caridad Velázquez-Sánchez

Resumo

The research presented was aimed at determining spectral indices related to soil salinity by remote sensing in two seasons of the year contrasting by their rainfall regimes, in Mayarí Agroecosystem, at Holguin Province, Cuba. The images used were of May 2016 and December 2018, obtained from the USGS by the Landsat 8 OLI / TIRS satellite in the 011/046 grid. The QGis 3.10 software was used to determine the spectral indices, as well as the radiometric correction, statistical report of the digital values of the images and the preparation of thematic maps. The results obtained show the variation of digital values of the spectral indices in both seasons of the year studied, where the IS presented higher content of salts and less areas with vegetation in May 2016, which could be given by the end of the drought season and the beginning of the rainy season. The same behavior was illustrated by the ENDWI, NDDI and VSSI indices, which influenced the behavior of the IS and NDVI.

Article Details

Como Citar
García-Reyes, R. A., González Posada-Dacosta, M. D., Torres-Calzado, K., Villazón-Gómez, J. A., Abellón-MolinaI, M. I., & Velázquez-Sánchez, E. C. (2021). Remote Sensing of Salinity in Agroecosystem of Mayarí, at Holguín Province, Cuba. Revista Ciencias Técnicas Agropecuarias, 30(1). Obtido de https://revistas.unah.edu.cu/index.php/rcta/article/view/1370
Secção
Artículos Originales

Referências

ALDABAA, A.A.; WEINDORF, D.C.; CHAKRABORTY, S.; SHARMA, A.B.; LI, B.: “Combination of proximal and remote sensing methods for rapid soil salinity quantification”, Geoderma, 239: 34-46, 2015, ISSN: 0016-7061, DOI: https://dx.doi.org/10.1016/j.geoderma.2014.09.011.

AL-KHAIER, F.: Soil salinity detection using satellite remote sensing, International Institute for Geo-Information Science and Earth observation ITC, MSc. Thesis in Geo-Information Science and Earth Observation, Enscheda, the Netherlands, 2003.

ALLBED, A.; KUMAR, L.; ALDAKHEEL, Y.Y.: “Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region”, Geoderma, 230: 1-8, 2014, ISSN: 0016-7061, DOI: https://dx.doi.org/10.1016/j.geoderma.2014.03.025.

ASFAW, E.; SURYABHAGAVAN, K.V.; ARGAW, M.: “Soil salinity modeling and mapping using remote sensing and GIS: The case of Wonji sugar cane irrigation farm, Ethiopia”, Journal of the Saudi Society of Agricultural Sciences, 17(3): 250-258, 2018, ISSN: 1658-077X, DOI: https://dx.doi.org/10.1016/j.jssas.2016.05.003.

ÁVILA, S.E.; GARCÍA, S.J.A.; VALTIERRA, P.E.; GARCÍA, M.R.; HOYOS, F.G.: “Producción de biodiesel derivado de la Jatropha: un estudio de competitividad en el estado de Chiapas, México”, Revista Fitotecnia Mexicana, 41(4): 461-468, 2018, ISSN: 0187-7380.

BAQUERO, G.; ESTEBAN, B.; PUIG, R.; RIBA, J.; RIUS, A.: “Characterization of physical properties of vegetable oils to be used as fuel in diesel engines”, 2010.

CHEN, D.; HUANG, J.; JACKSON, T.J.: “Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near-and short-wave infrared bands”, Remote Sensing of Environment, 98(2-3): 225-236, 2005, ISSN: 0034-4257, DOI: https://dx.doi.org/10.1016/j.rse.2005.07.008.

DEHNI, A.; LOUNIS, M.: “Remote sensing techniques for salt affected soil mapping: application to the Oran region of Algeria”, Procedia Engineering, 33: 188-198, 2012, ISSN: 1877-7058, DOI: https://dx.doi.org/10.1016/j.proeng.2012.01.1193.

ELHAG, M.: “Evaluation of different soil salinity mapping using remote sensing techniques in arid ecosystems, Saudi Arabia”, Journal of Sensors, : 1-8, 2016, ISSN: 1687-725X, DOI: https://dx.doi.org/10.1155/2016/7596175.

GORJI, T.; SERTEL, E.; TANIK, A.: “Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from Turkey”, Ecological Indicators, 74: 384-391, 2017, ISSN: 1470-160X, DOI: https://dx.doi.org/10.1016/j.ecolind.2016.11.043.

GU, Y.; BROWN, F.J.; VERDIN, P.J.; WARDLOW, B.: “A five‐year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States”, Geophysical research letters, 34(6): 1-6, 2007, ISSN: 0094-8276, DOI: https://dx.doi.org/10.1029/2006GL029127.

HEIDINGER, A.H.: Detección de salinidad de los suelos en el Antiplano Peruano-Boliviano mediante percepción remota, inducción electromagnética y sistemas de información geográfica, Universidad Nacional Agraria La Molina, Facultad de Ciencias …, Tesis de Licenciatura, Lima, Perú, 2008.

KHAN, N.M.; GUEVARA, V.V.; SATO, Y.; SHIOZAWA, S.: “Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators”, Agricultural Water Management, 77(1-3): 96-109, 2005, ISSN: 0378-3774, DOI: https://dx.doi.org/10.1016/j.agwat.2004.09.038.

MARTÍNEZ, N.; LÓPEZ, C.; BASURTO, M.; PÉREZ, R.: “Efectos por salinidad en el desarrollo vegetativo. Tecnociencia. 5, 156-161”, 2011.

MULLER, S.J.: Indirect soil salinity detection in irregated areas using earth observation methods, Stellenbosch University, Faculty of Science, Master of Science Thesis, Stellenbosch, Sud Africa, 2017.

OLIVA, M.A.; RINCÓN, R.; ZENTENO, E.; PINTO, A.; DENDOOVEN, L.; GUTIÉRREZ, F.: “Rol del vermicompost frente al estrés por cloruro de sodio en el crecimiento y fotosíntesis en plántulas de tamarindo (Tamarindus indica L.)”, Revista Gayana. Botánica, 65(1): 10-17, 2011, ISSN: 0717-6643, e-ISSN: 0016-5301.

PLATONOV, A.; NOBLE, A.; KUZIEV, R.: “Soil salinity mapping using multi-temporal satellite images in agricultural fields of Syrdarya province of Uzbekistan”, En: Developments in soil salinity assessment and reclamation: Innovative thinking and use of marginal soil and water resources in irrigated agriculture, Ed. Springer, Shahid SA, Abdelfattah MA, and Taha FK ed., Dordrecht, Netherlands, pp. 87-98, 2013.

ROUSE, J.; HAAS, R.; SCHELL, J.; DEERING, D.: “Monitoring Vegetation Systems in the Great Plains with ERTS Proceeding”, En: Third Earth Reserves Technology Satellite Symposium, Greenbelt: NASA SP-351, USA, 1974, ISBN: 30103017.

SOCA, R.: Identificación de las tierras degradadas por la salinidad del suelo en los cultivos de caña de azúcar mediante imágenes de satélite, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Físicas, Tesis para optar el Grado Académico de Magíster en Física con mención en Geofísica, Lima, Perú, 2015.

WANG, J.; DING, J.; YU, D.; AKIYAMA, D.M.; HE, B.; CHEN, X.; GE, X.; ZHANG, Z.; WANG, Y.; YANG, X.: “Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI”, Journal Science of The Total Environment, 707: 1-11, 2020, ISSN: 0048-9697, DOI: https://dx.doi.org/10.1016/j.scitotenv.2019.136092.

Artigos Similares

Também poderá iniciar uma pesquisa avançada de similaridade para este artigo.