Modelo para el cálculo de la resistencia del suelo a la penetración de sondas. Parte I: sondas cónicas
Main Article Content
Abstract
como la resistencia a la penetración (índice de cono) calculados, se ven
incrementadas con el aumento del ángulo del cono. La comparación de
la resistencia a la penetración calculada mediante el modelo, evaluado con los
datos geométricos correspondientes a un cono normalizado ASAE, con resultados experimentales obtenidos en un suelo Ferralítico Rojo, arrojó un
error de predicción de 2,8%.
Article Details
Those authors that have publications with this journal accept the following terms:
1. They will retain their copyright and guarantee the journal the right of first publication of their work, which will be simultaneously subject to the License Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows third parties to share the work whenever its author is indicated and its first publication this journal. Under this license the author will be free of:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
• NonCommercial — You may not use the material for commercial purposes.
• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
2. The authors may adopt other non-exclusive license agreements to distribute the published version of the work (e.g., deposit it in an institutional telematics file or publish it in a monographic volume) whenever the initial publication is indicated in this journal.
3. The authors are allowed and recommended disseminating their work through the Internet (e.g. in institutional telematics archives or on their website) before and during the submission process, which can produce interesting exchanges and increase the citations of the published work. (See the Effect of open access).
References
ADAMCHUK, V. I.: “On-the-go soil sensors for precision agriculture”, Computers and Electronics in Agriculture, 44: 71-91, 2004.
ALIHAMSYAH, T.; E.G. HUMPHRIES; C.G. BOWERS: “A technique for horizontal measurement of soil mechanical impedance”, Transactions of the ASABE, 33(1): 73–77, 1990.
ANDRADE-SANCHEZ, P.; S.K. UPADHYAYA; B.M. JENKINS & F.A. GARCIAS: Evaluation of the UC Davis Compaction Profile Sensor, 14pp., In: ASAE Paper Number 021185, 28- 31 July 2002.
ANDRADE-SANCHEZ, P.; S.K. UPADHYAYA; C. PLOUFFE; B. POUTRE: “Development and field evaluation of a field-ready soil compaction profile sensor for real-time applications”, Appl. Eng. Agric., 24(6): 743–750, 2008.
ASAE: Soil cone penetrometer, pp. 591, Agricultural Yearbook, ASAE Standards S.313.2, USA, 1991.
CHUNG, S. O.; K. A. SUDDUTH: “Soil failure models for vertically operating and horizontally operating strength sensors”. Transactions of the ASABE, 49(4): 851−863, 2006.
CHUNG, S.O.; K.A SUDDUTH; P. P. MOTAVALLI; N. R. KITCHEN: “Relating mobile sensor soil strength to penetrometer cone index”, Soil & Tillage Research, 129: 9–18, 2013.
GLANCEY, J.L., K. UPADAHYAYA; J. CHANCELLOR; W. RUMSEY: “An instrumented chisel for the study of soil-tillage dynamics”, Soil and Tillage Research, 14: 1–24, 1989.
HALL, H. E. & R. L. RAPER: “Development and concept evaluation of an on-the-go soil strength measurement system”, American Society of Agricultural Engineers, 48(2): 469−477, 2005.
HEMMAT, A., A.R. BI NANDEH; J GHAISARI; A. KHORSANDI: “Development and field testing of an integrated sensor for on-the-gomeasurement of soil mechanical resistance”, Sensors and Actuators, 198: 61–68, 2013.
HERRERA, M: Simulación del comportamiento mecánico de los suelos Ferralíticos rojos mediante el método de elementos finitos, 107pp., Tesis (en opción al grado científico de Doctor en Ciencias Técnicas Agropecuarias): Universidad Agraria de La Habana, San José de las Lajas, La Habana, Cuba, 2006.
HERRERA, M.; C. E. IGLESIAS; D. LARA; O. GONZÁLEZ y E. LÓPEZ: “Desarrollo de un sensor para la medición continua de la compactación del suelo”, Revista Ciencias Técnicas Agropecuarias, 20(1): 6-11, 2011.
HETTIARATCHI, D.R.P. & A.R. REECE: “The calculation of passive soil resistance”, Geotechnique 24(3): 289–310, 1974.
JOHNSON, J.B.: A Statistical Micromechanical Theory of Cone Penetration in Granular Materials, US Army Corps of Engineers Engineer Research and Development Center, (ERDC/CRREL) TR-03-3, USA, 2003.
LAFFITA, L. A: De t e r mi n a c i ó n d e l c o e fi c i e n t e d e f r i c c i ó n s u e l o m e t a l p a r a u n s u e l o Fe r r a l í t i c o r o j o l i x i v i a d o. Tesis (opción al título académico de Máster en Mecanización Agrícola). Universidad Agraria de La Habana. San José de las Lajas, Mayabeque, Cuba, 2012.
MOUAZEN, A.; K. DUMONT; K. MAERTENS & H. RAMON: “Two- dimencional prediction of spatial variation in topsoil compaction of a sandy loam field based on measured horizontal force of compaction sensor, cutting depth and moist ure content.”, Soil & Tillage Research, 74(1): 91–102, 2003a.
MOUAZEN, A. & H. RAMOS: “Expanding implementation of an on-line measurement system of topsoil compaction in loamy sand, loam, silt loam and silt soils”, Soil &Tillage Research, 103: 98-104, 2009.
MOUAZEN, A.; H. RAMOS & D.E. BERDEMAEKER: “Modelling compaction from on-line measurement of soil properties and sensor draught ”. Precision Agriculture, 4(2): 203-212, 2003b.
NADERI-BOLDAJI, M.; R. ALIMARDANI; A.HEMMAT; A. SHARIFI; A. KEYHANI; Z. M. TEKESTE & T. KELLER: “3D finite element simulation of a single-tip horizontal penetrometer–soil interaction. Part I: Development of the model and evaluation of the model parameters”, Soil & Tillage Research, 134, 153–162. 2013.
OWEN, G.T.; H. DRUMMOND; L. COBB & J. GODWIN: “An instrumentation system for deep tillage research”, Transactions of the ASAE, 30(6): 1578–1582, 1987.
RAMOS, C. E., A. LAFFITA, A. GARCÍA DE LA FIGAL, P.A. VALDÉS y R. TORRES: “Deter minación experimental del coeficiente de fricción dinámico suelo-metal en un suelo ferralítico rojo”. Revista Ciencias Técnicas Agropecuaria, 21(3): 35-40, 2012.
SCHURING, D. J. & R. I. EMORI: Soil deforming processes and dimensional analysis. SAE Paper No. 897C. New York, USA, 1964.
SHEN, J. & R.L. KUSHWAHA: Soil–Machine Interaction, A Finite Element Perspective, New York: Marcel Dekker, Inc., USA, 1998.
SHMULEVICH, I.: “State of the art modeling of soil–tillage interaction using discrete element method”, Soil & Tillage Researc, 111: 41–53, 2010.
STAFFORD, J.V.; J.G. HENDRICK: “Dynamic sensing of soil pans”, Transactions of the ASAE, 31(1): 9–13, 1988.
SUDDUTH, K. A.; J. W. HUMMEL and S. J. BIRRELL: Sensors for site specific management, In: The State of Site-Specific Management for Agriculture: 1997.
WISMER, R. D., and H. J. LUTH: Performance of plane soil cutting blades in clay. Trans. ASAE 15 (2): 211-216. 1972.