Estimation of Soil Properties by Remote Sensing and Machine Learning
Main Article Content
Abstract
Soil suitability for a crop can be determined by quality indicators, which can be obtained by different methods. The objective of this research was to estimate the properties of a vertisol dedicated to rice cultivation by means of remote sensing and automatic learning. Chemical and physical properties of the soil that affect rice physiology were determined “in situ”, with a completely randomized sampling of 100 points at a depth of 0 m to 0.20 m. Properties were estimated from the Normalized Difference Vegetation Index (NDVI) using machine learning tools. Organic matter, calcium, magnesium and phosphorus can be estimated by linear regression with NDVI, considering that they had Standard Errors of 0.27, 3.41, 4.12 and 1.68, respectively, and coefficients of determination close to 1. The random forest technique showed the best performance, with values in its determination close to 1 and an error in its estimation and validation close to 0.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Those authors that have publications with this journal accept the following terms:
1. They will retain their copyright and guarantee the journal the right of first publication of their work, which will be simultaneously subject to the License Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows third parties to share the work whenever its author is indicated and its first publication this journal. Under this license the author will be free of:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
• NonCommercial — You may not use the material for commercial purposes.
• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
2. The authors may adopt other non-exclusive license agreements to distribute the published version of the work (e.g., deposit it in an institutional telematics file or publish it in a monographic volume) whenever the initial publication is indicated in this journal.
3. The authors are allowed and recommended disseminating their work through the Internet (e.g. in institutional telematics archives or on their website) before and during the submission process, which can produce interesting exchanges and increase the citations of the published work. (See the Effect of open access).
References
ABDALKARIM, K.; GAZNAYEE, H.A.A.; AL-QURAISHI, A.M.F.; ABDALLA, Z.O.: “Predictive Digital Mapping of Surface Soil Properties using Remote Sensing and Multivariate Statistical Analysis.”, Zanco Journal of Pure and Applied Sciences, 35(6): 189-203, 2023, ISSN: 2412-3986.
ANGLADETTE, A.: El arroz. Agricultura Tropical, Colección Agricultura Tropical, Ed. Editorial Blume, 867 p., 1969, ISBN: 84-7313-835-X.
AYOUBI, S.; SHAHRI, A.P.; KARCHEGANI, P.M.; SAHRAWAT, K.L.: “Application of artificial neural network (ANN) to predict soil organic matter using remote sensing data in two ecosystems”, Biomass and remote sensing of biomass, 10: 181-196, 2011.
BAROUDY, A.A.L.; ALI, A.M.; MOHAMED, E.S.; MOGHANM, F.S.; SHOKR, M.S.; SAVIN, I.; PODDUBSKY, A.M.; DING, Z.; KHEIR, A.; ALDOSARI, A.A.: “Modeling land suitability for rice crop using remote sensing and soil quality indicators: The case study of the nile delta”, Sustainability, 12(22): 9653, 2020, ISSN: 2071-1050.
CASANOVAS, C.E.; SUÁREZ DEL VILLAR, L.E.; ÁLVAREZ, S.A.; AVILLEIRA, C.I.: “Valoración de la seguridad alimentaria cubana a partir de la superficie agrícola explotada y los rendimientos agrícolas”, Revista Universidad y Sociedad, 14(5): 304-314, 2022, ISSN: 2218-3620.
CHAI, T.; DRAXLER, R.R.: “Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature”, Geoscientific model development, 7(3): 1247-1250, 2014, ISSN: 1991-9603.
CHOUDHURY, B.U.; MANDAL, S.: “Indexing soil properties through constructing minimum datasets for soil quality assessment of surface and profile soils of intermontane valley (Barak, North East India)”, Ecological Indicators, 123: 107369, 2021, ISSN: 1470-160X.
DE SMITH, M.; GOODCHILD, M.; LONGLEY, P.: Geoespacial analysis. A comprehensive guide to principles, techniques and software tolos, Ed. The Winchelsea Press, Winchelsea, UK, Winchelsea, UK, 2013.
DEL VALLE, M.J.; GONZÁLEZ, V.; RAFAEL, P.L.; SÁNCHEZ, A.O.R.; DELGADO, T.C.: “Efecto de las variables climáticas sobre el rendimiento agrícola del arroz (Oryza sativa L.)”, Ingeniería Agrícola, 12(1), 2022, ISSN: 2227-8761.
DHARUMARAJAN, S.; HEGDE, R.; SINGH, S.: “Spatial prediction of major soil properties using Random Forest techniques–A case study in semi-arid tropics of South India, Geoderma Reg., 10, 154–162”, 2017.
FORKUOR, G.; HOUNKPATIN, O.K.; WELP, G.; THIEL, M.: “High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models”, PloS one, 12(1): e0170478, 2017, ISSN: 1932-6203.
GARCÍA, R.R.A.; RUÍZ, P.M.E.; SERGIO, R.R.: “Indicador de calidad de un Vertisol dedicado al arroz en la provincia Holguín, Cuba”, Revista Ciencias Técnicas Agropecuarias, 34, 2025.
GATERA, A.; KURADUSENGE, M.; BAJPAI, G.; MIKEKA, C.; SHRIVASTAVA, S.: “Comparison of random forest and support vector machine regression models for forecasting road accidents”, Scientific African, 21: e01739, 2023, ISSN: 2468-2276.
GOPP, N.; SAVENKOV, O.; NECHAEVA, T.; SMIRNOVA, N.; SMIRNOV, A.: “Application of NDVI in digital mapping of phosphorus content in soils and phosphorus supply assessment in plants”, Izvestiya, Atmospheric and Oceanic Physics, 55: 1322-1328, 2019, ISSN: 0001-4338.
HERNÁNDEZ, J.A.; PÉREZ, P.; BOSCH, I.D.; CASTRO, S.N.: Clasificación de los suelos de Cuba., Ed. Instituto Nacional de Ciencias Agrícolas, Instituto Nacional de Ciencias Agrícolas, ed., San José de las Lajas, Mayabeque, Cuba, 91 p., 2015, ISBN: 959-7023-77-6.
JIANG, Y.; RAO, L.; SUN, K.; HAN, Y.; GUO, X.: “Spatio-temporal distribution of soil nitrogen in Poyang lake ecological economic zone (South-China)”, Science of the total environment, 626: 235-243, 2018, ISSN: 0048-9697.
KHANAL, S.; FULTON, J.; KLOPFENSTEIN, A.; DOURIDAS, N.; SHEARER, S.: “Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield”, Computers and electronics in agriculture, 153: 213-225, 2018, ISSN: 0168-1699.
KO, J.; SHIN, T.; KANG, J.; BAEK, J.; SANG, W.G.: “Combining machine learning and remote sensing-integrated crop modeling for rice and soybean crop simulation”, Frontiers in Plant Science, 15: 1320969, 2024, ISSN: 1664-462X.
LIESS, M.; SCHMIDT, J.; GLASER, B.: “Improving the spatial prediction of soil organic carbon stocks in a complex tropical mountain landscape by methodological specifications in machine learning approaches”, PLoS One, 11(4): e0153673, 2016, ISSN: 1932-6203.
LUQUE, R.L.: “Revisión Sistemática de Literatura de Imágenes Satelitales en Hidrología y Agricultura”, Revista Ibérica de Sistemas e Tecnologias de Informação, (E55): 264-278, 2023, ISSN: 1646-9895.
MAZUR, P.; GOZDOWSKI, D.; WNUK, A.: “Relationships between soil electrical conductivity and sentinel-2-derived NDVI with pH and content of selected nutrients”, Agronomy, 12(2): 354, 2022, ISSN: 2073-4395.
MONTGOMERY, D.C.; SKINNER, K.R.; RUNGER, G.C.: “Process monitoring for multiple count data using generalized linear model-based control charts”, International Journal of Production Research, 41(6): 1167-1180, 2003, ISSN: 0020-7543.
NASH, J.E.; SUTCLIFFE, J.V.: “River flow forecasting through conceptual models part I—A discussion of principles”, Journal of hydrology, 10(3): 282-290, 1970, ISSN: 0022-1694.
NORMA CUBANA (NC): “Calidad del suelo-determinación de los componentes orgánicos”, NC: 1043.2014, Oficina Nacional de Normalización, Cuba. 2014.
NORMA CUBANA (NC): “Calidad del suelo-determinación de los componentes orgánicos”, NC: 1043.2014, Oficina Nacional de Normalización, Cuba. 2014.
NORMA CUBANA (NC): “Determinación de las formas móviles de Fósforo y Potasio”,. NC: 52.1999, Oficina Nacional de Normalización, Cuba. 1999.
NORMA CUBANA (NC): “Calidad del Suelo. Determinación de la capacidad de intercambio catiónico y de los cationes intercambiables del suelo”, NC: 209.2002, Oficina Nacional de Normalización, Cuba. 2002.
NORMA CUBANA (NC): “Calidad del Suelo. Determinación del Nitrógeno total Método Kjeldahl”, NC: 11261.2009, Oficina Nacional de Normalización, Cuba. 2009.
NORMA CUBANA (NC): “Calidad del Suelo. Evaluación de la afectación por salinidad”, NC: 776.2010, Oficina Nacional de Normalización, Cuba. 2010.
NORMA CUBANA (NC): “Calidad del suelo-determinación de pH”. NC: 10390.2014, Oficina Nacional de Normalización, Cuba. 2014.
PANIGRAHI, B.; KATHALA, K.C.R.; SUJATHA, M.: “A machine learning-based comparative approach to predict the crop yield using supervised learning with regression models”, Procedia Computer Science, 218: 2684-2693, 2023, ISSN: 1877-0509.
PARK, H.J.; BAEK, N.; SEO, B.S.; JEONG, Y.J.; YANG, H.I.; LEE, S.I.; YOON, K.S.; KIM, H.Y.; CHOI, W.J.: “Estimation of the electrical conductivity of saturated paste from soil–water extracts of coastal saline paddy soils using random forest and multiple regression models”, Journal of Soils and Sediments, 24(3): 1250-1259, 2024, ISSN: 1439-0108.
ROUSE JR, J.W.; HAAS, R.H.; DEERING, D.; SCHELL, J.; HARLAN, J.C.: Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation, 1974.
SHRESTHA, N.; SHUKLA, S.: “Support vector machine based modeling of evapotranspiration using hydro-climatic variables in a sub-tropical environment”, Agricultural and forest meteorology, 200: 172-184, 2015, ISSN: 0168-1923.
SINGH, G.; SINGH, J.; WANI, O.A.; EGBUERI, J.; AGBASI, J.C.: “Assessment of groundwater suitability for sustainable irrigation: a comprehensive study using indexical, statistical, and machine learning approaches”, Groundwater for Sustainable Development, 24: 101059, 2024, ISSN: 2352-801X.
SIQUEIRA, R.G.; MOQUEDACE, C.M.; FERNANDES-FILHO, E.I.; SCHAEFER, C.E.R.; FRANCELINO, M.R.; SACRAMENTO, I.F.; MICHEL, R.F.: “Modelling and prediction of major soil chemical properties with Random Forest: Machine learning as tool to understand soil-environment relationships in Antarctica”, Catena, 235: 107677, 2024, ISSN: 0341-8162.
TAGHIZADEH, M.R.; KHADEMI, H.; KHAYAMIM, F.; ZERAATPISHEH, M.; HEUNG, B.; SCHOLTEN, T.: “A comparison of model averaging techniques to predict the spatial distribution of soil properties”, Remote S, 14(3): 472, 2022, ISSN: 2072-4292.
VERGOPOLAN, N.; CHANEY, N.W.; PAN, M.; SHEFFIELD, J.; BECK, H.E.; FERGUSON, C.; TORRES-, R.L.; SADRI, S.; WOOD, E.F.: “SMAP-HydroBlocks, a 30-m satellite-based soil moisture dataset for the conterminous US”, Scientific data, 8(1): 264, 2021, ISSN: 2052-4463.
VILLAZÓN, J.A.; NORIS, P.; GARCÍA, R.A.; CRUZ, M.: “Análisis temporal de la agresividad y concentración de las precipitaciones en áreas agropecuarias de la provincia de Holguín, Cuba”, Idesia (Arica), 41(3): 77-86, 2023.
WHETTON, R.; ZHAO, Y.; SHADDAD, S.; MOUAZEN, A.M.: “Nonlinear parametric modelling to study how soil properties affect crop yields and NDVI”, Computers and electronics in agriculture, 138: 127-136, 2017, ISSN: 0168-1699.
WILLMOTT, C.J.: “Some comments on the evaluation of model performance”, Bulletin of the American Meteorological Society, 63(11): 1309-1313, 1982, ISSN: 0003-0007.
ZHANG, Y.; SUI, B.; SHEN, H.; WANG, Z.: “Estimating temporal changes in soil pH in the black soil region of Northeast China using remote sensing”, Computers and Electronics in Agriculture, 154: 204-212, 2018, ISSN: 0168-1699.