Salinity-sugarcane cultivation relationship determined by remote sensing at the Urbano Noris Sugar Mill

Main Article Content

Roberto Alejandro García-Reyes
Mario Damian González Posada-Dacosta
Juan Alejandro Villazón-Gómez
Sergio Rodríguez-Rodríguez

Abstract

The objective of the research was to determine the relationship between soil salinity and the state of the vegetation in areas of the Sugar Mill UEB “Urbano Noris”, in Holguín Province. The image used was corrected radiometrically with the use of the QGis 3.10A Coruña software and the NDVI and SI indices were determined. By means of a random sampling in 10 production units, the values were extracted in 50 points separated at 100 meters to perform the regression analysis between the salinity and the vegetation indexes and to interpret their statistics by using the Statgraphics Plus 5.0 software. The use of the NDVI as an indicator of the vegetation state showed the presence of vast areas under stress with values lower than 0.5, just as the saline index showed a high proportion of soils with high salt content with negative indices from -1 to 0. The use of remote sensing to determine soil salinity showed that between them there is a negative correlation of - 88.44% and a determination of 71.25%, which defines a inverse dependence between both variables.

Article Details

How to Cite
García-Reyes, R. A., González Posada-Dacosta, M. D., Villazón-Gómez, J. A., & Rodríguez-Rodríguez, S. (2021). Salinity-sugarcane cultivation relationship determined by remote sensing at the Urbano Noris Sugar Mill. Revista Ciencias Técnicas Agropecuarias, 30(2). Retrieved from https://revistas.unah.edu.cu/index.php/rcta/article/view/1404
Section
Original Articles

References

ALLBED, A.; KUMAR, L.; ALDAKHEEL, Y.Y.: “Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region”, Geoderma, 230: 1-8, 2014, ISSN: 0016-7061, DOI: https://dx.doi.org/10.1016/j.geoderma.2014.03.025.

BANNARI, A.; GUEDON, A.; EL‐HARTI, A.; CHERKAOUI, F.; EL‐GHMARI, A.: “Characterization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO‐1) sensor”, Communications in Soil Science and Plant Analysis, 39(19-20): 2795-2811, 2008, ISSN: 0010-3624, DOI: https://dx.doi.org/10.1080/00103620802432717.

BARET, F.: Use of spectra1 reflectance variation to retrieve canopy biophysical character in Danson, Ed. John Wiley, Advances in Environmenal Remote Sensing. (F.M. Danson and S.E. Plummer eds) ed., Chichester, New York, USA, 33-51 p., 1995.

DING, J.; YU, D.: “Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan–Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments”, Geoderma, 235(4): 316-322, 2014, ISSN: 0016-7061, DOI: https://dx.doi.org/10.1016/j.geoderma.2014.07.028.

EL HARTI, A.; LHISSOU, R.; CHOKMANI, K.; OUZEMOU, J.; HASSOUNA, M.; BACHAOUI, E.M.; EL GHMARI, A.: “Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices”, International Journal of Applied Earth Observation and Geoinformation, 50: 64-73, 2016, ISSN: 0303-2434, DOI: https://dx.doi.org/10.1016/j.jag.2016.03.008.

ELHAG, M.: “Evaluation of different soil salinity mapping using remote sensing techniques in arid ecosystems, Saudi Arabia”, Journal of Sensors, 2016: 1-8, 2016, ISSN: 1687-725X, DOI: https://dx.doi.org/10.1155/2016/7596175.

GILABERT, M.A.; GONZÁLEZ, P.J.; GARCÍA, H.J.: “Acerca de los índices de vegetación”, Revista de teledetección, 8(1): 1-10, 1997, ISSN: 1133-0953.

HERNÁNDEZ, J.; PÉREZ, J.; BOSCH, I.; CASTRO, S.: Clasificación de los suelos de Cuba 2015, Ed. Instituto Nacional de Ciencias Agrícolas e Instituto de Suelos, La Habana, Cuba, 93 p., 2015, ISBN: 978-959-7023-77-7.

IVUSHKIN, K.; BARTHOLOMEUS, H.; BREGT, A.K.; PULATOV, A.: “Satellite thermography for soil salinity assessment of cropped areas in Uzbekistan”, Land degradation & development, 28(3): 870-877, 2017, ISSN: 1085-3278, DOI: https://dx.doi.org/10.1002/ldr.2670. 2017.

LAU, Q.A.; GAREA, L.E.; RUIZ, P.M.E.: “Estimación de la salinidad de los suelos utilizando una imagen espectrozonal y el sistema de información geográfica TELEMAP”, Revista Ciencias Técnicas Agropecuarias, 14(1): 47-54, 2005, ISSN: 1010-2760, e-ISSN: 2071-0054.

LAU, Q.A.; LHERMITTE, S.; GILLIAMS, S.; RUIZ, P.M.E.: “Relación de la salinidad del suelo con la reflectancia multiespectral de la caña de azúcar cultivada en condiciones extremas”, Revista Ciencias Técnicas Agropecuarias, 12(3): 19-29, 2003, ISSN: 1010-2760, e-ISSN: 2071-0054.

MEERA, G.G.; PARTHIBAN, S.; THUMMALU, N.; CHRISTY, A.: “Ndvi: Vegetation change detection using remote sensing and gis–A case study of Vellore District”, Procedia Computer Science, 57: 1199-1210, 2015, ISSN: 1877-0509, DOI: https://dx.doi.org/10.1016/j.procs.2015.07.415.

MULLER, S.J.: Indirect soil salinity detection in irrigated areas using earth observation methods, Stellenbosch University, Faculty of Science, Thesis presented in fulfilment of the requirements for the degree of Master of Science, Stellenbosch, South Africa, 2017.

PLATONOV, A.; NOBLE, A.; KUZIEV, R.: Soil salinity mapping using multi-temporal satellite images in agricultural fields of Syrdarya province of Uzbekistan, Ed. Developments in Soil Salinity Assessment and Reclamation, Springer, Dordrecht, 2013, DOI: https://dx.doi.org/10.1007/978-94-007-5684-7_5.

RAWASHDEH, S.B.A.: “Assessment of change detection method based on normalized vegetation index in environmental studies”, International Journal of Applied Science and Engineering, 10(2): 89-97, 2012.

ROUSE, J.; HAAS, R.H.; SCHELL, J.A.; DEERING, D.W.: Monitoring vegetation systems in the Great Plains with ERTS, no. ser. Work of the US Gov. Public Use Permitted, Ed. NASA Special Publication, NASA. Goddard Space Flight Center 3d ERTS-1 Sym ed., vol. Vol. 1, Sect. A., USA, 1974.

SCUDIERO, E.; SKAGGS, T.H.; CORWIN, D.L.: “Regional-scale soil salinity assessment using Landsat ETM+ canopy reflectance”, Remote Sensing of Environment, 169: 335-343, 2015, ISSN: 0034-4257, DOI: http://dx.doi.org/10.1016/j.rse.2015.08.0260034-4257.

SIDIKE, A.; ZHAO, S.; WEN, Y.: “Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra”, International Journal of Applied Earth Observation and Geoinformation, 26: 156-175, 2014, ISSN: 0303-2434, DOI: https://dx.doi.org/10.1016/j.jag.2013.06.002.

SOCA, R.: Identificación de tierras degradadas por salinidad del suelo en los cultivos de caña de azúcar en Pomalca usando imágenes de satélite, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Físicas, Tesis para optar el Grado Académico de Magíster en Física con mención en Geofísica, Lima, Perú, 2015.

USGS: USGS EROS Archive, Landsat Archives, Landsat 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) Level-1 Data Products, [en línea], Inst. Servicio Geológico de los Estados Unidos (USGS), USA, 2020, Disponible en: https://earthexplorer.usgs.gov, [Consulta: 17 de noviembre de 2020].

WANG, J.; DING, J.; YU, D.; TENG, D.; HE, B.; CHEN, X.; GE, X.; ZHANG, Z.; WANG, Y.; YANG, X.; SHI, T.; SU, F.: “Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI”, Science of the Total Environment, 707: 1-11, 2020, ISSN: 0048-9697, DOI: https://dx.doi.org/10.1016/j.scitotenv.2019.136092.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)