Salinity-sugarcane cultivation relationship determined by remote sensing at the Urbano Noris Sugar Mill
Main Article Content
Abstract
Article Details
Those authors that have publications with this journal accept the following terms:
1. They will retain their copyright and guarantee the journal the right of first publication of their work, which will be simultaneously subject to the License Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows third parties to share the work whenever its author is indicated and its first publication this journal. Under this license the author will be free of:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
• NonCommercial — You may not use the material for commercial purposes.
• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
2. The authors may adopt other non-exclusive license agreements to distribute the published version of the work (e.g., deposit it in an institutional telematics file or publish it in a monographic volume) whenever the initial publication is indicated in this journal.
3. The authors are allowed and recommended disseminating their work through the Internet (e.g. in institutional telematics archives or on their website) before and during the submission process, which can produce interesting exchanges and increase the citations of the published work. (See the Effect of open access).
References
ALLBED, A.; KUMAR, L.; ALDAKHEEL, Y.Y.: “Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region”, Geoderma, 230: 1-8, 2014, ISSN: 0016-7061, DOI: https://dx.doi.org/10.1016/j.geoderma.2014.03.025.
BANNARI, A.; GUEDON, A.; EL‐HARTI, A.; CHERKAOUI, F.; EL‐GHMARI, A.: “Characterization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO‐1) sensor”, Communications in Soil Science and Plant Analysis, 39(19-20): 2795-2811, 2008, ISSN: 0010-3624, DOI: https://dx.doi.org/10.1080/00103620802432717.
BARET, F.: Use of spectra1 reflectance variation to retrieve canopy biophysical character in Danson, Ed. John Wiley, Advances in Environmenal Remote Sensing. (F.M. Danson and S.E. Plummer eds) ed., Chichester, New York, USA, 33-51 p., 1995.
DING, J.; YU, D.: “Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan–Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments”, Geoderma, 235(4): 316-322, 2014, ISSN: 0016-7061, DOI: https://dx.doi.org/10.1016/j.geoderma.2014.07.028.
EL HARTI, A.; LHISSOU, R.; CHOKMANI, K.; OUZEMOU, J.; HASSOUNA, M.; BACHAOUI, E.M.; EL GHMARI, A.: “Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices”, International Journal of Applied Earth Observation and Geoinformation, 50: 64-73, 2016, ISSN: 0303-2434, DOI: https://dx.doi.org/10.1016/j.jag.2016.03.008.
ELHAG, M.: “Evaluation of different soil salinity mapping using remote sensing techniques in arid ecosystems, Saudi Arabia”, Journal of Sensors, 2016: 1-8, 2016, ISSN: 1687-725X, DOI: https://dx.doi.org/10.1155/2016/7596175.
GILABERT, M.A.; GONZÁLEZ, P.J.; GARCÍA, H.J.: “Acerca de los índices de vegetación”, Revista de teledetección, 8(1): 1-10, 1997, ISSN: 1133-0953.
HERNÁNDEZ, J.; PÉREZ, J.; BOSCH, I.; CASTRO, S.: Clasificación de los suelos de Cuba 2015, Ed. Instituto Nacional de Ciencias Agrícolas e Instituto de Suelos, La Habana, Cuba, 93 p., 2015, ISBN: 978-959-7023-77-7.
IVUSHKIN, K.; BARTHOLOMEUS, H.; BREGT, A.K.; PULATOV, A.: “Satellite thermography for soil salinity assessment of cropped areas in Uzbekistan”, Land degradation & development, 28(3): 870-877, 2017, ISSN: 1085-3278, DOI: https://dx.doi.org/10.1002/ldr.2670. 2017.
LAU, Q.A.; GAREA, L.E.; RUIZ, P.M.E.: “Estimación de la salinidad de los suelos utilizando una imagen espectrozonal y el sistema de información geográfica TELEMAP”, Revista Ciencias Técnicas Agropecuarias, 14(1): 47-54, 2005, ISSN: 1010-2760, e-ISSN: 2071-0054.
LAU, Q.A.; LHERMITTE, S.; GILLIAMS, S.; RUIZ, P.M.E.: “Relación de la salinidad del suelo con la reflectancia multiespectral de la caña de azúcar cultivada en condiciones extremas”, Revista Ciencias Técnicas Agropecuarias, 12(3): 19-29, 2003, ISSN: 1010-2760, e-ISSN: 2071-0054.
MEERA, G.G.; PARTHIBAN, S.; THUMMALU, N.; CHRISTY, A.: “Ndvi: Vegetation change detection using remote sensing and gis–A case study of Vellore District”, Procedia Computer Science, 57: 1199-1210, 2015, ISSN: 1877-0509, DOI: https://dx.doi.org/10.1016/j.procs.2015.07.415.
MULLER, S.J.: Indirect soil salinity detection in irrigated areas using earth observation methods, Stellenbosch University, Faculty of Science, Thesis presented in fulfilment of the requirements for the degree of Master of Science, Stellenbosch, South Africa, 2017.
PLATONOV, A.; NOBLE, A.; KUZIEV, R.: Soil salinity mapping using multi-temporal satellite images in agricultural fields of Syrdarya province of Uzbekistan, Ed. Developments in Soil Salinity Assessment and Reclamation, Springer, Dordrecht, 2013, DOI: https://dx.doi.org/10.1007/978-94-007-5684-7_5.
RAWASHDEH, S.B.A.: “Assessment of change detection method based on normalized vegetation index in environmental studies”, International Journal of Applied Science and Engineering, 10(2): 89-97, 2012.
ROUSE, J.; HAAS, R.H.; SCHELL, J.A.; DEERING, D.W.: Monitoring vegetation systems in the Great Plains with ERTS, no. ser. Work of the US Gov. Public Use Permitted, Ed. NASA Special Publication, NASA. Goddard Space Flight Center 3d ERTS-1 Sym ed., vol. Vol. 1, Sect. A., USA, 1974.
SCUDIERO, E.; SKAGGS, T.H.; CORWIN, D.L.: “Regional-scale soil salinity assessment using Landsat ETM+ canopy reflectance”, Remote Sensing of Environment, 169: 335-343, 2015, ISSN: 0034-4257, DOI: http://dx.doi.org/10.1016/j.rse.2015.08.0260034-4257.
SIDIKE, A.; ZHAO, S.; WEN, Y.: “Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra”, International Journal of Applied Earth Observation and Geoinformation, 26: 156-175, 2014, ISSN: 0303-2434, DOI: https://dx.doi.org/10.1016/j.jag.2013.06.002.
SOCA, R.: Identificación de tierras degradadas por salinidad del suelo en los cultivos de caña de azúcar en Pomalca usando imágenes de satélite, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Físicas, Tesis para optar el Grado Académico de Magíster en Física con mención en Geofísica, Lima, Perú, 2015.
USGS: USGS EROS Archive, Landsat Archives, Landsat 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) Level-1 Data Products, [en línea], Inst. Servicio Geológico de los Estados Unidos (USGS), USA, 2020, Disponible en: https://earthexplorer.usgs.gov, [Consulta: 17 de noviembre de 2020].
WANG, J.; DING, J.; YU, D.; TENG, D.; HE, B.; CHEN, X.; GE, X.; ZHANG, Z.; WANG, Y.; YANG, X.; SHI, T.; SU, F.: “Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI”, Science of the Total Environment, 707: 1-11, 2020, ISSN: 0048-9697, DOI: https://dx.doi.org/10.1016/j.scitotenv.2019.136092.