Influence of Soil Moisture and Dry Bulk Density on the Engineering Properties of an Oxisol Soil

Contenido principal del artículo

Elvis Lopez Bravo

Resumen

Soil mechanical properties were experimentally determined by triaxial compression tests and modified shear tests. The experimental study was divided in the tests to determine properties related to the soil interface as Young’s Modulus, cohesion and internal friction, conducted by compression triaxial tests; and those properties related to the interface soil-metal, such as soil-metal adhesion and external friction, conducted by the direct modified shear tests. Soils, however, are in constant changes related mainly to climatic, natural and external factors. All these changes modify the soil mechanical response. To capture the soil strength at different conditions, the mechanical properties above defined were obtained at a different content of water and dry bulk density. A multilevel factorial experimental design was used to combine the soil gravimeter water content w ranging from 16 to 32% with a dry bulk density rd between 1 and 1,4 g/cm3. As a result, a set of statistical regression equations was obtained for predicting the magnitude of the mechanical properties as a function of soil moisture and compaction level.

Detalles del artículo

Cómo citar
Lopez Bravo, E. (2017). Influence of Soil Moisture and Dry Bulk Density on the Engineering Properties of an Oxisol Soil. Ingeniería Agrícola, 4(2), 22–26. Recuperado a partir de https://revistas.unah.edu.cu/index.php/IAgric/article/view/640
Sección
Artículos Originales

Citas

ABO-ELNOR, M.; R. HAMILTON & J. T. BOYLE: “Simulation of soil-blade interaction for sandy soil using advanced 3D finite element analysis”, Soil and Tillage Research, 75 (1): 61-73, 2004.

ARCHER, J. R. & M. J. MARKS: “Techniques for Measuring Soil Physical Properties”, ADAS Reference Book: 22,130, 1985.

ASTM-D2487: Test Method for Classification of Soils for Engineering Purposes. Annual Book of ASTM Standards, Vol 04.08, West Conshohocken, United State, Vig. 1980.

ASTM-D2850: Standard Test Method for Confined Compressive Strength of Soil. Book of Standards. Committee D-18, West Conshohocken, United State, Vig. 1990.

ASTM-D3080: Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. Book of Standards. Committee D-18, West Conshohocken, United State, Vig. 1998.

AYERS, P. D.: “Moisture and bulk density effects on soil shear strength parameters for coarse grained soils.”, Transactions of the Asae, 31 (2): 1282-7, 1987.

BAYHAN, Y.: “Reduction of wear vía hardfacing of chiesel plougshare”, Tribology International, 39: 570-574, 2006.

COETZEE, C. J. y D. N. J. ELS: “Calibration of granular material parameters for DEM modelling and numerical verification by blade–granular material interaction”, Journal of Terramechanics, in press: 2009.

CUI, K.; P. DE´FOSSEZ y R. GUY: “A new approach for modelling vertical stress distribution at the soil/tyre interface to predict the compaction of cultivated soils by using the PAXIS code”, Soil & Tillage Research, 95: 277-2, 2007.

GARCÍA DE LA FIGAL, A.: “Estudio de las propiedades tecnológicas mas importantes de los suelos cubanos”, Revista Ciencias Técnicas Agropecuarias, 3 (2): 61-77, 1978.

GONZÁLEZ, O.: Modelación de la Compactación Provocada por el Tráfico de Neumáticos de los Vehículos Agrícolas en Suelos en Condiciones de Laboratorio, 209pp., Tesis (en opción al grado científico de Doctor en Ciencias Técnicas Agropecuarias), Universidad Agraria de La Habana, Centro de Mecanizacion Agropecuaria, La Habana, 2011.

GRAFF, L. J.; R. C. ROBERGE y T. G. CROWE: Wear of Ripper Point Hardsurfacing. En:2007 ASABE/CSBE North Central Intersectional Conference, October 12-13, pp. 10, North Dakota State University. Fargo, North Dakota, USA. Paper Number: RRV-07120, 2007.

HORN, R. y H. FLEIGE: “A method for assessing the impact of load on mechanical stability and on physical properties of soils”, Soil and Tillage Research, 73 (1-2): 89-99, 2003.

MCKYES, E.: Agricultural Engineering Soil Mechanics, Amsterdam: (ed.) ElsevierSciences, Amsterdam, 1989.

MOUAZEN, A. M. y H. RAMON: “A numerical-statistical hybrid modelling scheme for evaluation of draught requirements of a subsoiler cutting a sandy loam soil, as affected by moisture content, bulk density and depth”, Soil and Tillage Research, 63 (3-4): 155-165, 2002.

MOUAZEN, A. M.; H. RAMON y J. D. BAERDEMAEKER: “Effects of Bulk Density and Moisture Content on Selected Mechanical Properties of Sandy Loam Soil”, Biosystems Engineering, 83 (2): 217-224, 2002.

RODRÍGUEZ, M.: Fundamentación de un sistema de rodajes por semiesteras en las cosechadoras cubanas de caña de azúcar para trabajar en suelos de mal drenaje, 100pp., Tesis (en opción al grado científico de Doctor en Ciencias Técnicas) Universidad Central “Marta Abreu”, Departamento de Mecanizacion Agropecuaria, Santa Clara, Cuba, 1999.

SHMULEVICH, I.; Z. ASAF y D. RUBINSTEIN: “Interaction between soil and a wide cutting blade using the discrete element method”, Soil and Tillage Research, 97 (1): 37-50, 2007.

SUÁREZ, M. H.: Simulación del comportamiento mecánico de los suelos ferralíticos rojos mediante el método de elementos finitos 205pp., Tesis (en opción al grado científico de Doctor en Ciencias Técnicas Agropecuarias), Universidad Agraria de La Habana, Centro de Mecanizacion Agropecuaria, La Habana, 2006.