Determinación de parámetros térmicos de un intercambiador de calor de tubos concéntricos con fluidos orgánico-vapor

Main Article Content

David Ramón Gutiérrez Toledo
Alain Ariel de la Rosa Andino
Lázaro Ventura Benítez Leyva
Romaida Serrano Guzman
Yordanka Aguilera Corrales

Resumo

El presente trabajo se realizó para la línea de molida de la Fábrica de Conservas de Frutas y Vegetales en el municipio de Yara de la provincia de Granma. Dicha fábrica pertenece a la Unidad Empresarial de Base Granma. El mismo tuvo como objetivo determinar los parámetros térmicos de un Intercambiado de Calor (IC) de tubos concéntricos que permita garantizar el calentamiento y esterilización del fluido orgánico para la posterior separación semilla-corteza de algunos vegetales. Para ello se propuso una metodología de cálculo basada en los fundamentos básicos de la Termodinámica Técnica y la Transferencia de Calor para el posterior ensamblaje y montaje del IC en el lugar de trabajo. Dentro de los principales resultados obtenidos se destacan una eficiencia de 61% del equipo. Otros de los resultados son la determinación del área de transferencia de calor con 6,697 m2. Esto se debe a las pérdidas por radiación y convección que son inevitables en estos tipos de equipos pertenecientes a la industria alimenticia por no poderse aislar térmicamente para garantizar la inocuidad de los alimentos. Por otro lado, las temperaturas de salida del fluido orgánico son mantenidas según las normativas entre 85 oC y 115 oC.

Article Details

Como Citar
Gutiérrez Toledo, D. R., de la Rosa Andino, A. A., Benítez Leyva, L. V., Serrano Guzman, R., & Aguilera Corrales, Y. (2018). Determinación de parámetros térmicos de un intercambiador de calor de tubos concéntricos con fluidos orgánico-vapor. Revista Ciencias Técnicas Agropecuarias, 27(1), 76–88. Obtido de https://revistas.unah.edu.cu/index.php/rcta/article/view/862
Secção
Artículos Originales
Biografias Autor

David Ramón Gutiérrez Toledo, Fábrica de Conservas de Frutas y Vegetales

Ing., Especialista en mantenimiento

Alain Ariel de la Rosa Andino, Universidad de Granma, Facultad de Ciencias Técnicas, Dpto. de Ingeniería Mecánica

Dr.C.

Lázaro Ventura Benítez Leyva, Universidad de Granma, Facultad de Ciencias Técnicas, Dpto. de Ingeniería Mecánica

Dr.C.

Romaida Serrano Guzman, Universidad de Granma, Centro de Idiomas

M.Sc.

Yordanka Aguilera Corrales, Universidad de Granma, Centro de Idiomas

M.Sc.

Referências

ARKA, A.; SUNNILBHAI, D.D.: “Optimization of shell and tube heat exchanger”, International journal for scientific research & develoment, 3(11): 27-35, 2016, ISSN: 2321-0613.

CAVAZZUTI, M.; AGNANI, E.; CORTICELLI, M.A.: “Optimization of a finned concentric pipes heat exchanger for industrial recuperative burners”, Applied Thermal Engineering, 84: 110-117, 2015, ISSN: 1359-4311, DOI: 10.1016/j.applthermaleng.2015.03.027, Disponible en: http://www.sciencedirect.com/science/article/pii/S1359431115002501, [Consulta: 2 de febrero de 2017].

CENGEL, Y.A.: Heat Transfer: A Practical Approach with EES, [en línea], Ed. McGraw-Hill Higher Education, 2.a ed., Boston, 896 p., 2002, ISBN: 978-0-07-282620-3, Disponible en: https://www.amazon.es/Heat-Transfer-Practical-Approach-EES/dp/0072826207, [Consulta: 2 de febrero de 2017].

CONSTANTINESCU, D.; PETRAN, H.: “Assessment of real heat transfer coefficients through shell and tube and plate heat exchangers”, Journal of Civil Engineering Research, 11(1): 10–17, 2011, ISSN: 1934-7359.

GNIELINSKI, V.: “New equations for heat and mass transfer in turbulent pipe and channel flow”, International Chemical Engineering, 16(2): 359–368, 1976, ISSN: 1533-385X.

HADIDI, A.; HADIDI, M.; NAZARI, A.: “A new design approach for shell-and-tube heat exchangers using imperialist competitive algorithm (ICA) from economic point of view”, Energy Conversion and Management, 67: 66-74, 2013, ISSN: 0196-8904, DOI: 10.1016/j.enconman.2012.11.017, Disponible en: http://www.sciencedirect.com/science/article/pii/S0196890412004530, [Consulta: 2 de febrero de 2017].

HOLMAN, J.P.: Transferencia de calor, [en línea], Ed. McGraw-Hill, 8.a ed., Madrid, España, 484 p., 1998, ISBN: 978-84-481-2040-5, Disponible en: https://books.google.com.cu/books/about/Transferencia_de_calor.html?id=tf_MSgAACAAJ, [Consulta: 2 de febrero de 2017].

INCROPERA, F.P.; DEWITT, D.P.: Fundamentals of heat and mass transfer, [en línea], Ed. Wiley, 4.a ed., 886 p., 1996, ISBN: 978-0-471-30460-9, Disponible en: https://books.google.com.cu/books/about/Fundamentals_of_heat_and_mass_transfer.html?id=UAZRAAAAMAAJ&redir_esc=y, [Consulta: 2 de febrero de 2017].

KAYS, W.M.; LONDON, A.L.: Compact Heat Exchangers, [en línea], Ed. McGraw-Hill, 2.a ed., New York, 272 p., 1964, ISBN: 978-0-07-033391-8, Disponible en: https://books.google.com.cu/books/about/Compact_Heat_Exchangers.html?id=Ea29QgAACAAJ&redir_esc=y, [Consulta: 2 de febrero de 2017].

KUJAN, P.; SHAKH, T.M.: “Design and optimizatión of shell and tube heat exchanger using HTRI software”, Indian Journal of Applied Research, 5(1): 10-13, 2015, ISSN: 2249-555X.

LEI, Y.-G.; HE, Y.-L.; TIAN, L.-T.; CHU, P.; TAO, W.-Q.: “Hydrodynamics and heat transfer characteristics of a novel heat exchanger with delta-winglet vortex generators”, Chemical Engineering Science, 65(5): 1551-1562, 2010, ISSN: 0009-2509, DOI: 10.1016/j.ces.2009.10.017, Disponible en: http://www.sciencedirect.com/science/article/pii/S0009250909007325, [Consulta: 2 de febrero de 2017].

MAZZUCCO, A.; VOSKUILEN, T.G.; WATERS, E.L.; POURPOINT, T.L.; ROKNI, M.: “Heat exchanger selection and design analyses for metal hydride heat pump systems”, International Journal of Hydrogen Energy, 41(7): 4198-4213, 2016, ISSN: 0360-3199, DOI: 10.1016/j.ijhydene.2016.01.016, Disponible en: http://www.sciencedirect.com/science/article/pii/S0360319915306790, [Consulta: 2 de febrero de 2017].

MENÉNDEZ-PÉREZ, A.; BORRAJO-PÉREZ, R.; SACASAS-SUAREZ, D.: “Análisis de la influencia del número de venecianas en intercambiadores de calor compactos”, Ingeniería Mecánica, 19(3): 176-184, 2016, ISSN: 1815-5944, Disponible en: http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1815-59442016000300008&lng=es&nrm=iso&tlng=en, [Consulta: 2 de febrero de 2017].

MONTES, M.J.; BARBERO, R.; ABBAS, R.; ROVIRA, A.: “Performance model and thermal comparison of different alternatives for the Fresnel single-tube receiver”, Applied Thermal Engineering, 104: 162-175, 2016, ISSN: 1359-4311, DOI: 10.1016/j.applthermaleng.2016.05.015, Disponible en: http://www.sciencedirect.com/science/article/pii/S1359431116306676, [Consulta: 2 de febrero de 2017].

MORAN, M.J.; SHAPIRO, H.N.: Fundamentos de termodinámica técnica, Ed. Reverte, Barcelona, España, 688 p., 1999, ISBN: 84-291-1313-0.

MORING, F.V.: Termodinamica, Ed. Félix Varela, La Habana, Cuba, 807 p., 1969.

REYES-RODRÍGUEZ, M.B.; MOYA-RODRÍGUEZ, J.-L.; CRUZ-FONTICIELLA, O.-M.; FÍRVIDA-DONÉSTEVEZ, E.-M.; VELÁZQUEZ-PÉREZ, J.-A.: “Automatización y optimización del diseño de intercambiadores de calor de tubo y coraza mediante el método de Taborek”, Ingeniería Mecánica, 17(1): 78-89, 2014, ISSN: 1815-5944, Disponible en: http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1815-59442014000100009&lng=es&nrm=iso&tlng=es, [Consulta: 2 de febrero de 2017].

SADEGHZADEH, H.; ALIEHYAEI, M.; ROSEN, M.A.: “Optimization of a Finned Shell and Tube Heat Exchanger Using a Multi-Objective Optimization Genetic Algorithm”, Sustainability, 7(9): 11679-11695, 2015, DOI: 10.3390/su70911679, Disponible en: http://www.mdpi.com/2071-1050/7/9/11679, [Consulta: 2 de febrero de 2017].

SENCAN -SAHIN, A.; KILIÇ , B.; KILIÇ , U .: “Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm ”, Energy Conversion and Management, 52(11): 3356-3362, 2011, ISSN: 0196-8904, DOI: 10.1016/j.enconman.2011.07.003, Disponible en: http://www.sciencedirect.com/science/article/pii/S0196890411001944, [Consulta: 2 de febrero de 2017].

TORRES-TAMAYO, E.; RETIRADO-MEDIANEJA, Y.; GÓNGORA-LEYVA, E.: “Coeficientes de transferencia de calor experimental para el enfriamiento de licor en intercambiadores de placas”, Ingeniería Mecánica, 17(1): 68-77, 2014, ISSN: 1815-5944, Disponible en: http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1815-59442014000100008&lng=es&nrm=iso&tlng=en, [Consulta: 2 de febrero de 2017].

VERA-GARCÍA, F.; GARCÍA-CASCALES, J.R.; GONZÁLVEZ-MACIÁ, J.; CABELLO, R.; LLOPIS, R.; SANCHEZ, D.; TORRELLA, E.: “A simplified model for shell-and-tubes heat exchangers: Practical application”, Applied Thermal Engineering, 30(10): 1231-1241, 2010, ISSN: 1359-4311, DOI: 10.1016/j.applthermaleng.2010.02.004, Disponible en: http://www.sciencedirect.com/science/article/pii/S1359431110000633, [Consulta: 2 de febrero de 2017].

VERMA, T.N.; NASHINE, P.; SINGH, D.V.; SINGH, T.S.; PANWAR, D.: “ANN: Prediction of an experimental heat transfer analysis of concentric tube heat exchanger with corrugated inner tubes”, Applied Thermal Engineering, 120: 219-227, 2017, ISSN: 1359-4311, DOI: 10.1016/j.applthermaleng.2017.03.126, Disponible en: http://www.sciencedirect.com/science/article/pii/S1359431117303617, [Consulta: 2 de febrero de 2017].