Determination of Thermic Parameters of a Heat Exchanger of Concentric Tubes with Organic-Steam Fluids

Main Article Content

David Ramón Gutiérrez Toledo
Alain Ariel de la Rosa Andino
Lázaro Ventura Benítez Leyva
Romaida Serrano Guzman
Yordanka Aguilera Corrales

Abstract

The present research was carried out for the grinding line at the Tinned Food and Vegetables Factory in Yara Municipality, Granma, which belongs to the Basic Business Unit from this province. The objective was aimed at determining the thermic parameters of a Heat Exchanger (HE) of concentric tubes which permits to guarantee heating and sterilization of organic fluid for the seed- skin separation of some vegetables. In this direction, it was proposed a methodology of calculation based on the foundations of Technical Thermodynamics and Heat Transference for the subsequent assembling and mounting of HE at workplace. Among the most relevant outcomes it was obtained a 61% of the machine’s efficiency. Other results are the determination of the heat transference area with 6,697 m2. This constitutes a consequence of losses by radiation and convection, which are unavoidable in these types of machines of food industry since it is not possible to achieve a thermic isolation to guarantee food innocuousness. On the other hand, organic fluids outlet temperatures are maintained according to the normative between 85°C and 115°C.

Article Details

How to Cite
Gutiérrez Toledo, D. R., de la Rosa Andino, A. A., Benítez Leyva, L. V., Serrano Guzman, R., & Aguilera Corrales, Y. (2018). Determination of Thermic Parameters of a Heat Exchanger of Concentric Tubes with Organic-Steam Fluids. Revista Ciencias Técnicas Agropecuarias, 27(1), 76–88. Retrieved from https://revistas.unah.edu.cu/index.php/rcta/article/view/862
Section
Original Articles
Author Biographies

David Ramón Gutiérrez Toledo, Fábrica de Conservas de Frutas y Vegetales

Ing., Especialista en mantenimiento

Alain Ariel de la Rosa Andino, Universidad de Granma, Facultad de Ciencias Técnicas, Dpto. de Ingeniería Mecánica

Dr.C.

Lázaro Ventura Benítez Leyva, Universidad de Granma, Facultad de Ciencias Técnicas, Dpto. de Ingeniería Mecánica

Dr.C.

Romaida Serrano Guzman, Universidad de Granma, Centro de Idiomas

M.Sc.

Yordanka Aguilera Corrales, Universidad de Granma, Centro de Idiomas

M.Sc.

References

ARKA, A.; SUNNILBHAI, D.D.: “Optimization of shell and tube heat exchanger”, International journal for scientific research & develoment, 3(11): 27-35, 2016, ISSN: 2321-0613.

CAVAZZUTI, M.; AGNANI, E.; CORTICELLI, M.A.: “Optimization of a finned concentric pipes heat exchanger for industrial recuperative burners”, Applied Thermal Engineering, 84: 110-117, 2015, ISSN: 1359-4311, DOI: 10.1016/j.applthermaleng.2015.03.027, Disponible en: http://www.sciencedirect.com/science/article/pii/S1359431115002501, [Consulta: 2 de febrero de 2017].

CENGEL, Y.A.: Heat Transfer: A Practical Approach with EES, [en línea], Ed. McGraw-Hill Higher Education, 2.a ed., Boston, 896 p., 2002, ISBN: 978-0-07-282620-3, Disponible en: https://www.amazon.es/Heat-Transfer-Practical-Approach-EES/dp/0072826207, [Consulta: 2 de febrero de 2017].

CONSTANTINESCU, D.; PETRAN, H.: “Assessment of real heat transfer coefficients through shell and tube and plate heat exchangers”, Journal of Civil Engineering Research, 11(1): 10–17, 2011, ISSN: 1934-7359.

GNIELINSKI, V.: “New equations for heat and mass transfer in turbulent pipe and channel flow”, International Chemical Engineering, 16(2): 359–368, 1976, ISSN: 1533-385X.

HADIDI, A.; HADIDI, M.; NAZARI, A.: “A new design approach for shell-and-tube heat exchangers using imperialist competitive algorithm (ICA) from economic point of view”, Energy Conversion and Management, 67: 66-74, 2013, ISSN: 0196-8904, DOI: 10.1016/j.enconman.2012.11.017, Disponible en: http://www.sciencedirect.com/science/article/pii/S0196890412004530, [Consulta: 2 de febrero de 2017].

HOLMAN, J.P.: Transferencia de calor, [en línea], Ed. McGraw-Hill, 8.a ed., Madrid, España, 484 p., 1998, ISBN: 978-84-481-2040-5, Disponible en: https://books.google.com.cu/books/about/Transferencia_de_calor.html?id=tf_MSgAACAAJ, [Consulta: 2 de febrero de 2017].

INCROPERA, F.P.; DEWITT, D.P.: Fundamentals of heat and mass transfer, [en línea], Ed. Wiley, 4.a ed., 886 p., 1996, ISBN: 978-0-471-30460-9, Disponible en: https://books.google.com.cu/books/about/Fundamentals_of_heat_and_mass_transfer.html?id=UAZRAAAAMAAJ&redir_esc=y, [Consulta: 2 de febrero de 2017].

KAYS, W.M.; LONDON, A.L.: Compact Heat Exchangers, [en línea], Ed. McGraw-Hill, 2.a ed., New York, 272 p., 1964, ISBN: 978-0-07-033391-8, Disponible en: https://books.google.com.cu/books/about/Compact_Heat_Exchangers.html?id=Ea29QgAACAAJ&redir_esc=y, [Consulta: 2 de febrero de 2017].

KUJAN, P.; SHAKH, T.M.: “Design and optimizatión of shell and tube heat exchanger using HTRI software”, Indian Journal of Applied Research, 5(1): 10-13, 2015, ISSN: 2249-555X.

LEI, Y.-G.; HE, Y.-L.; TIAN, L.-T.; CHU, P.; TAO, W.-Q.: “Hydrodynamics and heat transfer characteristics of a novel heat exchanger with delta-winglet vortex generators”, Chemical Engineering Science, 65(5): 1551-1562, 2010, ISSN: 0009-2509, DOI: 10.1016/j.ces.2009.10.017, Disponible en: http://www.sciencedirect.com/science/article/pii/S0009250909007325, [Consulta: 2 de febrero de 2017].

MAZZUCCO, A.; VOSKUILEN, T.G.; WATERS, E.L.; POURPOINT, T.L.; ROKNI, M.: “Heat exchanger selection and design analyses for metal hydride heat pump systems”, International Journal of Hydrogen Energy, 41(7): 4198-4213, 2016, ISSN: 0360-3199, DOI: 10.1016/j.ijhydene.2016.01.016, Disponible en: http://www.sciencedirect.com/science/article/pii/S0360319915306790, [Consulta: 2 de febrero de 2017].

MENÉNDEZ-PÉREZ, A.; BORRAJO-PÉREZ, R.; SACASAS-SUAREZ, D.: “Análisis de la influencia del número de venecianas en intercambiadores de calor compactos”, Ingeniería Mecánica, 19(3): 176-184, 2016, ISSN: 1815-5944, Disponible en: http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1815-59442016000300008&lng=es&nrm=iso&tlng=en, [Consulta: 2 de febrero de 2017].

MONTES, M.J.; BARBERO, R.; ABBAS, R.; ROVIRA, A.: “Performance model and thermal comparison of different alternatives for the Fresnel single-tube receiver”, Applied Thermal Engineering, 104: 162-175, 2016, ISSN: 1359-4311, DOI: 10.1016/j.applthermaleng.2016.05.015, Disponible en: http://www.sciencedirect.com/science/article/pii/S1359431116306676, [Consulta: 2 de febrero de 2017].

MORAN, M.J.; SHAPIRO, H.N.: Fundamentos de termodinámica técnica, Ed. Reverte, Barcelona, España, 688 p., 1999, ISBN: 84-291-1313-0.

MORING, F.V.: Termodinamica, Ed. Félix Varela, La Habana, Cuba, 807 p., 1969.

REYES-RODRÍGUEZ, M.B.; MOYA-RODRÍGUEZ, J.-L.; CRUZ-FONTICIELLA, O.-M.; FÍRVIDA-DONÉSTEVEZ, E.-M.; VELÁZQUEZ-PÉREZ, J.-A.: “Automatización y optimización del diseño de intercambiadores de calor de tubo y coraza mediante el método de Taborek”, Ingeniería Mecánica, 17(1): 78-89, 2014, ISSN: 1815-5944, Disponible en: http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1815-59442014000100009&lng=es&nrm=iso&tlng=es, [Consulta: 2 de febrero de 2017].

SADEGHZADEH, H.; ALIEHYAEI, M.; ROSEN, M.A.: “Optimization of a Finned Shell and Tube Heat Exchanger Using a Multi-Objective Optimization Genetic Algorithm”, Sustainability, 7(9): 11679-11695, 2015, DOI: 10.3390/su70911679, Disponible en: http://www.mdpi.com/2071-1050/7/9/11679, [Consulta: 2 de febrero de 2017].

SENCAN -SAHIN, A.; KILIÇ , B.; KILIÇ , U .: “Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm ”, Energy Conversion and Management, 52(11): 3356-3362, 2011, ISSN: 0196-8904, DOI: 10.1016/j.enconman.2011.07.003, Disponible en: http://www.sciencedirect.com/science/article/pii/S0196890411001944, [Consulta: 2 de febrero de 2017].

TORRES-TAMAYO, E.; RETIRADO-MEDIANEJA, Y.; GÓNGORA-LEYVA, E.: “Coeficientes de transferencia de calor experimental para el enfriamiento de licor en intercambiadores de placas”, Ingeniería Mecánica, 17(1): 68-77, 2014, ISSN: 1815-5944, Disponible en: http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1815-59442014000100008&lng=es&nrm=iso&tlng=en, [Consulta: 2 de febrero de 2017].

VERA-GARCÍA, F.; GARCÍA-CASCALES, J.R.; GONZÁLVEZ-MACIÁ, J.; CABELLO, R.; LLOPIS, R.; SANCHEZ, D.; TORRELLA, E.: “A simplified model for shell-and-tubes heat exchangers: Practical application”, Applied Thermal Engineering, 30(10): 1231-1241, 2010, ISSN: 1359-4311, DOI: 10.1016/j.applthermaleng.2010.02.004, Disponible en: http://www.sciencedirect.com/science/article/pii/S1359431110000633, [Consulta: 2 de febrero de 2017].

VERMA, T.N.; NASHINE, P.; SINGH, D.V.; SINGH, T.S.; PANWAR, D.: “ANN: Prediction of an experimental heat transfer analysis of concentric tube heat exchanger with corrugated inner tubes”, Applied Thermal Engineering, 120: 219-227, 2017, ISSN: 1359-4311, DOI: 10.1016/j.applthermaleng.2017.03.126, Disponible en: http://www.sciencedirect.com/science/article/pii/S1359431117303617, [Consulta: 2 de febrero de 2017].