Hydrogen-Rich Syngas Production by Plasma Gasification of Existing Biomasses in Cuba

Main Article Content

Jorge Jadid Tamayo-Pacheco
Leonardo Peña-Pupo
Arelys Vázquez-Peña
Ángel Luis Brito-Sauvanell

Resumo

The production of 2nd generation biofuels is a transcendental issue for sustainability due to its influence on reducing fossil fuel consumption. One of the most recognized techniques for the production of biofuels starts from syngas with an H2/CO = 2 molar ratio. This gas can be obtained through the biomass gasification process, a complex process with several operational parameters. The purpose of this study was to perform the simulation of the plasma gasification process of three biomasses that are abundant agro-industrial or forest residues in Cuba. For this, the graphic method and the exploration of the operating regions were used applying a model with a thermochemical equilibrium approach. As a result, it was obtained that it is possible to achieve a production of syngas with values between 1.79-2.80, 1.68-2.37 and 2.09-2.81 NM3/kg from sugarcane bagasse, rice husk and wood sawdust, respectively, with the cold gas efficiencies, in that same order, 31-65%, 20-49%, and 43-53%. In addition, the sensitivity analysis was carried out to identify the influential parameters on performance indicators.

Article Details

Como Citar
Tamayo-Pacheco, J. J., Peña-Pupo, L., Vázquez-Peña, A., & Brito-Sauvanell, Ángel L. (2020). Hydrogen-Rich Syngas Production by Plasma Gasification of Existing Biomasses in Cuba. Revista Ciencias Técnicas Agropecuarias, 29(4). Obtido de https://revistas.unah.edu.cu/index.php/rcta/article/view/1329
Secção
Artículos Originales

Referências

DIAZ, G.; SHARMA, N.; LEAL-QUIROS, E.;MUNOZ-HERNANDEZ, A.: "Enhanced hydrogen production using steam plasma processing of biomass: Experimental apparatus and procedure", international journal of hydrogen energy, 40(5):2091-2098, 2015, DOI:10.1016/j.ijhydene.2014.12.049

FAVAS, J.; MONTEIRO, E.;ROUBOA, A.: "Hydrogen production using plasma gasification with steam injection", international journal of hydrogen energy, 42(16):10997-11005, 2017, DOI:10.1016/j.ijhydene.2017.03.109

HLINA, M.; HRABOVSKY, M.; KAVKA, T.;KONRAD, M.: "Production of high quality syngas from argon/water plasma gasification of biomass and waste", Waste Manag, 34(1):63-66, 2014, DOI:10.1016/j.wasman.2013.09.018

HRABOVSKY, M.; HLINA, M.; KOPECKY, V.; MASLANI, A.; ZIVNY, O.; KRENEK, P.; SEROV, A.;HURBA, O.: "Steam Plasma Treatment of Organic Substances for Hydrogen and Syngas Production", Plasma Chemistry and Plasma Processing, 37(3):739-762, 2017, DOI:10.1007/s11090-016-9783-5

IM-ORB, K.; SIMASATITKUL, L.;ARPORNWICHANOP, A.: "Analysis of synthesis gas production with a flexible H 2 /CO ratio from rice straw gasification", Fuel, 164361-373, 2016, DOI:10.1016/j.fuel.2015.10.018

ISMAIL, T. M.; MONTEIRO, E.; RAMOS, A.; EL-SALAM, M. A.;ROUBOA, A.: "An Eulerian model for forest residues gasification in a plasma gasifier", Energy, 1821069-1083, 2019, DOI:10.1016/j.energy.2019.06.070

LI, J.; LIU, K.; YAN, S.; LI, Y.;HAN, D.: "Application of thermal plasma technology for the treatment of solid wastes in China: An overview", Waste Manag, 58260-269, 2016, DOI:10.1016/j.wasman.2016.06.011

LOHA, C.; CHATTOPADHYAY, H.;CHATTERJEE, P. K.: "Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk", Energy, 36(7):4063-4071, 2011, DOI:10.1016/j.energy.2011.04.042

MAVUKWANA, A.; JALAMA, K.; NTULI, F.;HARDING, K. Simulation of sugarcane bagasse gasification using aspen plus. In International Conference on Chemical and Environmental Engineering (ICCEE), Johannesburg, South Africa. 2013, vol. 1516, p. 70-74.

MELGAR, A.; PÉREZ, J. F.; LAGET, H.;HORILLO, A.: "Thermochemical equilibrium modelling of a gasifying process", Energy Conversion and Management, 48(1):59-67, 2007, DOI:10.1016/j.enconman.2006.05.004

MOUNTOURIS, A.; VOUTSAS, E.;TASSIOS, D.: "Solid waste plasma gasification: Equilibrium model development and exergy analysis", Energy Conversion and Management, 471723-1737, 2006, DOI:10.1016/j.enconman.2005.10.015

PARTHASARATHY, P.;NARAYANAN, K. S.: "Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield – A review", Renewable Energy, 66570-579, 2014, DOI:10.1016/j.renene.2013.12.025

RUTBERG, P. G.; BRATSEV, A. N.; KUZNETSOV, V. A.; POPOV, V. E.; UFIMTSEV, A. A.;SHTENGEL’, S. V.: "On efficiency of plasma gasification of wood residues", Biomass and bioenergy, 35(1):495-504, 2011, DOI:10.1016/j.biombioe.2010.09.010

SHIE, J.-L.; CHEN, L.-X.; LIN, K.-L.;CHANG, C.-Y.: "Plasmatron gasification of biomass lignocellulosic waste materials derived from municipal solid waste", Energy, 6682-89, 2014, DOI:10.1016/j.energy.2013.12.042

SIKARWAR, V. S.; ZHAO, M.; FENNELL, P. S.; SHAH, N.;ANTHONY, E. J.: "Progress in biofuel production from gasification", Progress in Energy and Combustion Science, 61189-248, 2017, DOI:10.1016/j.pecs.2017.04.001

SMITH, J. M. Introduction to chemical engineering thermodynamics. In.: ACS Publications, 1950.

TAMOŠIŪNAS, A.; VALATKEVIČIUS, P.; VALINČIUS, V.;LEVINSKAS, R.: "Biomass conversion to hydrogen-rich synthesis fuels using water steam plasma", Comptes Rendus Chimie, 19(4):433-440, 2016, DOI:10.1016/j.crci.2015.12.002

TAVARES, R.; RAMOS, A.;ROUBOA, A.: "A theoretical study on municipal solid waste plasma gasification", Waste Manag, 9037-45, 2019, DOI:10.1016/j.wasman.2019.03.051

YOON, S. J.;LEE, J.-G.: "Hydrogen-rich syngas production through coal and charcoal gasification using microwave steam and air plasma torch", international journal of hydrogen energy, 37(22):17093-17100, 2012, DOI:10.1016/j.ijhydene.2012.08.054

ZAINAL, Z. A.; ALI, R.; LEAN, C. H.;SEETHARAMU, K. N.: "Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials", Energy Conversion and Management, 42(12):1499-1515, 2001, DOI:10.1016/s0196-8904(00)00078-9

ZHU, Q. High temperature syngas coolers. United Kingdom: 2015.