Validation of an Experimental Simulation Model Based on Computational Fluid Dynamics

Main Article Content

Alexander Laffita-Leyva
Arturo Martínez-Rodríguez
Enmanuel Ávila-González
Lázara Rangel-Montes de Oca

Resumo

As part of a research project aimed at determining the effect of extreme winds on agricultural economic objectives, through the application of simulation methods based on Computational Fluid Dynamics and finite elements analysis, some experimental runs were carried out to validate that simulation method and the criteria used during the formation of the models and the characteristics of the finite element meshing to be applied. For the experimental measurements, a wind tunnel built in the Agricultural Mechanization Center of the Agrarian University of Havana was used, which was modeled in 3D with the SolidWork 2018 computational tool and the simulation was carried out through the “Flow Simulation” module. For the experimental application of the simulation models used, the results of experimental measurements of the pressures within the wind tunnel were compared with the pressures determined by simulation. A variable pressure field in the space was achieved by interposing an obstacle to air circulation, aimed at achieving different pressure levels in different sections of the tunnel. As a result of the comparison, a simulation prediction error was obtained that ranged between 0.53 and 2.07%, which was extremely satisfactory.

Article Details

Como Citar
Laffita-Leyva, A., Martínez-Rodríguez, A., Ávila-González, E., & Rangel-Montes de Oca, L. (2020). Validation of an Experimental Simulation Model Based on Computational Fluid Dynamics. Revista Ciencias Técnicas Agropecuarias, 29(4). Obtido de https://revistas.unah.edu.cu/index.php/rcta/article/view/1325
Secção
Artículos Originales

Referências

ALEXANDRIKOVA, T.; PAVLOV, A.; STRELTSOV, V.: Hybrid density-and pressure-based splitting scheme for cavitating flows simulation, Ed. A.A. Mammoli, C.A. Brebbia, WIT Transactions on Engineering Sciences WIT Press, vol. 70, 41-56 p., 2011, ISBN: 978-1-84564-518-2.

BÁEZ, D.A.; POZOS, E.A.: Simulación numérica de los efectos del viento sobre un conjunto de paneles solares, Inst. Universidad Nacional Autónoma de México., Cuernavaca, Morelos, México, 2017.

BALBASTRO, G.; SONZOGNI, V.: “Simulación de un ensayo en túnel de viento aplicando CFD”, Mecánica Computacional, 26: 3779-3787, 2007.

BALBASTRO, G.C.; SONZOGNI, V.E.; FRANCK, G.; STORTI, M.: “Acción del viento sobre cubiertas abovedadas aisladas: simulación numérica.”, Mecánica Computacional, 23, 2004.

BITOG, J.; LEE, I.-B.; HWANG, H.-S.; SHIN, M.-H.; HONG, S.-W.; SEO, I.-H.; MOSTAFA, E.; PANG, Z.: “A wind tunnel study on aerodynamic porosity and windbreak drag”, Forest Science and technology, 7(1): 8-16, 2011, ISSN: 2158-0103.

BOLDES, U.; COLMAN, J.: La protección de los cultivos de los efectos del viento, Ed. Viento, Suelo y Plantas, INTA, Golberg A.D.; Kin A.G, BsAs ed., Argentina, 2003, ISBN: 987-521-104-4.

BORRELLI, J.; GREGORY, J.; ABTEW, W.: “Wind barriers: a reevaluation of height, spacing, and porosity”, Transactions of the ASAE, 32(6): 2023-2027, 1989, ISSN: 2151-0032, e-ISSN: 2151-0040.

FIGUEREDO, O.; ROMEO, L.: Producción avícola en Cuba: Realidades y desafíos, [en línea], Cubadebate, 2019, Disponible en: http://www.cubadebate.cu, [Consulta: 24 de marzo de 2020].

GOFRAN, C.M.: Experimental validation of CFD model predicting wind effects on inclined-roof mounted photovoltaic modules, KTH Industrial Engineering and Management Department of Energy Technology Division of Heat and Power Technology, Master of Science Thesis, Stockholm, 2008.

GROMKE, C.; RUCK, B.: “Aerodynamic modelling of trees for small-scale wind tunnel studies”, Forestry, 81(3): 243-258, 2008, ISSN: 1464-3626, DOI: 10.1093/ forestry/cpn027.

GUAN, D.; ZHANG, Y.; ZHU, T.: “A wind-tunnel study of windbreak drag”, Agricultural and forest meteorology, 118(1-2): 75-84, 2003, ISSN: 0168-1923.

HERRERA, P.M.I.; DE LA FIGAL, C.A.E.; DE LAS CUEVAS, H.; MARTINS, T.M.: “Modelling of the air current in the vertical plane of Hatsuta agricultural sprayer”, Revista Ciencias Técnicas Agropecuarias, 27(2): 5-11, 2018, ISSN: 1010-2760, e-ISSN: 2071-0054.

HERRERA, P.M.I.; DE LA FIGAL, C.A.E.; DE LAS CUEVAS, M.H.R.; MARTINS, T.M.: “Evaluación mediante la Dinámica de los Fluidos por Computadora (CFD) de la corriente de aire del pulverizador agrícola ASS-800”, Revista Ciencias Técnicas Agropecuarias, 23(2): 5-11, 2014, ISSN: 1010-2760, e-ISSN: 2071-0054.

HERRERA, P.M.I.; GARCÍA DE LA FIGAL, C.A.E.; DE LAS CUEVAS, M.H.R.; MARTINS, T.M.: “Efecto del viento en el flujo de aire de un pulverizador”, Revista Ciencias Técnicas Agropecuarias, 24(2): 44-48, 2015, ISSN: 1010-2760, e-ISSN: 2071-0054.

HERRERA, P.M.I.; GARCÍA DE LA FIGAL, C.A.E.; RAMOS, C.E.; MARTIN, T.M.: “Simulación mediante la dinámica de fluidos por computadora del efecto de la velocidad del viento en el desempeño de los pulverizadores agrícolas de ventilador”, Revista Ciencias Técnicas Agropecuarias, 21(1): 19-25, 2012, ISSN: 1010-2760, e-ISSN: 2071-0054.

HOFMANN, M.; STOFFEL, B.; COUTIER-DELGHOSA, O.; PATELLA, R.F.; REBOUD, J.-L.: “Experimental and numerical studies on a centrifugal pump with 2D-curved blades in cavitation condition”, En: CAV 2001:session B7.005, 2001.

HSU, S.-T.; WU, T.-C.: “Simulated wind action on photovoltaic module by non-uniform dynamic mechanical load and mean extended wind load”, Energy Procedia, 130: 94-101, 2017, ISSN: 1876-6102.

MARTÍNEZ, R.A.; LAFFITA, L.A.; LOMBANA, S.M.Y.: “Impacto de vientos extremos en baterías de paneles solares”, En: VII conferencia de Ingeniería Agrícola, AGRING 2013, San Jose de las Lajas, Mayabeque. Cuba, 2013, ISBN: 978-959-16-2185-6.

NATALINI, M.B.; CANAVESIO, O.F.; NATALINI, B.; PALUCH, M.J.: “Wind tunnel modelling of mean pressures on curved canopy roofs.”, En: American Conference on Wind Engineering, Clemson, 2001.

RÍOS, M.: Agricultura cubana en recuperación progresiva tras huracán Irma, [en línea], Inst. Portal de Radio Habana Cuba., La Habana, Cuba, 2017, Disponible en: http://www.radiohc.cu/noticias/economy/141924-agricultura-cubana-en-recuperacion-progresiva -tras-huracan-irma, [Consulta: 24 de marzo de 2020].

XIA, G.; LI, D.; MERKLE, C.L.: “Consistent properties reconstruction on adaptive Cartesian meshes for complex fluids computations”, Journal of Computational Physics, 225(1): 1175-1197, 2007, ISSN: 0021-9991.

Artigos Similares

Também poderá iniciar uma pesquisa avançada de similaridade para este artigo.

Artigos mais lidos do(s) mesmo(s) autor(es)

<< < 1 2