Application of Fluid Dynamics to the Design of the Centrifugal Pump Model BSC 80/200 (130-65)

Isidro Antonio Martínez-Blanco, Alain Ariel de la Rosa-Andino, Yusimit Karina Zamora-Hernandez, Idalberto Macías-Socarrás, René Misael Arias-Hidalgo, Laida Figueroa-Rodríguez

Abstract

The present work was carried out with the aim of simulating the performance of the BSC 80/200 (130-65) centrifugal pump using the CFD method, thus obtaining the head-flow, power-flow and efficiency-flow characteristics curves. To carry out this project, specialized bibliography was taken into account in the parametric design of centrifugal pumps and in analysis by finite elements applied to fluids, later the design, 3D projection and computational simulation were carried out using ANSYS (CFX). The results include obtaining the three-dimensional models of the pump body and the three impellers (5 blades, 6 blades and 7 blades) and that the correlation in all the curves is as expected, corresponding to what is referred to in the specialized bibliography. It was concluded that the comparison of the results obtained through the CFD simulations taking into account the variations in the number of blades showed that the impeller that generates the best results is the one with 7 blades, reaching the best efficiency (90%), power (36,25 kW) for a 70% flow of design.

Keywords

Flow; Efficiency; Power; Impeller

Full Text:

PDF HTML EPUB XML

References

ABO ELYAMIN, G. R. H.; BASSILY, M. A.; KHALIL, K. Y.; GOMAA, M. S.: "Effect of impeller blades number on the performance of a centrifugal pump", Alexandria Engineering Journal, 58(1): 39-48, 2019.

ARANIBAR, C., ALEXANDER, A.: Determinación predictiva de la cavitación por Parámetros Sónicos, 2016.

CHAKRABORTY, S.; CHOUNDHURI, K.; DUTTA, P.; DEBBARMA, B.: "Performance prediction of centrifugal pumps with variation of blade number", Journal of Scientific and Industrial Research: 373-378, 2013.

CHAKRABORTY, S.; PANDEY, K.: "Numerical Studies on Effects of Blade Number Variations on Performance of Centrifugal Pumps at 4000 RPM", International Journal of Engineering and Technology, 3: 410-416, 2011.

CHURCH, A. H.: Bombas y máquinas soplantes centrífugas: su teoría, cálculo, construcción y funcionamiento, 1987.

DOMAGAŁA, M. D. M. P. E. P. & MOMENI, H.: "CFD simulation of cavitation over water turbine hydrofoils", Symulacje CFD Zjawiska KawitacjI Przy Opływie Profili Turbin Pływów Morskich., 9: 159-164, 2017.

IANNETTI, A.; STICKLAND, M.; DEMPSTER, W.: "A CFD and experimental study on cavitation in positive displacement pumps: Benefits and drawbacks of the ‘full’ cavitation model", Engineering Applications of Computational Fluid Mechanics, 10: 57-71, 2016.

KARASSIK, I. J.; MESSINA, J. P.; COOPER, P.; HEALD, C. C.: Pump Handbook, Ed. McGRAW-HILL, Tercera Edición ed, 2001.

LAI, F.; ZHU, X.; LI, G.; ZHU, L.; WANG, F.: "Numerical Research on the Energy Loss of a Single-Stage Centrifugal Pump with Different Vaned Diffuser Outlet Diameters", Energy Procedia, 158: 5523-5528, 2019.

LORUSSO, M.; CAPURSO, T.; TORRESI, M.; FORTUNATO, B.; FORNARELLI, F.; CAMPOREALE, S. M.; MONTERISO, R.: "Efficient CFD evaluation of the NPSH for centrifugal pumps", Energy Procedia, 126: 778-785, 2017.

MÁRQUEZ, D., J, E.: Sistema CAD para Bombas Centrífugas de una etapa y simple admisión., 80pp., Maestria, Centro de Estudios CAD/CAM, Universidad de Holguín, Oscar Lucero Moya, Holguín, 2002.

MARTÍNEZ, V. Y.; RIAÑO, V. F.: "Deducción analítica de las curvas características de las bombas rotodinámicas en serie ", Ingeniería Hidraúlica y Ambiental, XXXIX(1): 98-111, 2018.

MATAIX, C.: Mecánica de los Fluidos y Máquinas Hidráulicas, Ed. Ediciones del Castillo, S.A, Segunda Edición ed, España, 1986.

PFEIDERER, C.: Bombas centrifugas y volumetricas, Ed. Lobar S. A., Madrid. España, 1960.

SHAH, S. R.; JAIN, S. V.; PATEL, R. N.; LAKHERA, V. J.: "CFD for Centrifugal Pumps: A Review of the State-of-the-Art", Procedia Engineering, 51: 715-720, 2013.

SHANKAR, V. K. A.; SUBRAMANIAMA, U.; SHANMUGAMB, P.; HANIGOVSZKIC, N.: "A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system", Applied Energy, 181(1): 495-513, 2016.

WANG, W.; OSMAN, M. K.; PEI, J.; GAN, X.; YIN, T.: "Artificial Neural Networks Approach for a Multi-Objective Cavitation Optimization Design in a Double-Suction Centrifugal Pump", Processes, 7: 2019.

WEIDONG, C.; LINGJUN, Y.; BING, L.; YINING, Z.: "The influence of impeller eccentricity on centrifugal pump", Advances in Mechanical Engineering, 9(9): 1-17, 2017.

YAO, Z. F.; YANG, Z. J.; WANG, F. J.: "Evaluation of near-wall solution approaches for large-eddy simulations of flow in a centrifugal pump impeller", 10: 454–467, 2016.

Refbacks

  • There are currently no refbacks.