Evaluation of diagnosis variable values of diesel internal combustion engine
Main Article Content
Abstract
Article Details
Those authors that have publications with this journal accept the following terms:
1. They will retain their copyright and guarantee the journal the right of first publication of their work, which will be simultaneously subject to the License Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows third parties to share the work whenever its author is indicated and its first publication this journal. Under this license the author will be free of:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
• NonCommercial — You may not use the material for commercial purposes.
• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
2. The authors may adopt other non-exclusive license agreements to distribute the published version of the work (e.g., deposit it in an institutional telematics file or publish it in a monographic volume) whenever the initial publication is indicated in this journal.
3. The authors are allowed and recommended disseminating their work through the Internet (e.g. in institutional telematics archives or on their website) before and during the submission process, which can produce interesting exchanges and increase the citations of the published work. (See the Effect of open access).
References
ALBARBAR, A.: “An investigation into diesel engine air-borne acoustics using continuous wavelet transform”, Journal of Mechanical Science and Technology, 27(9): 2599-2604, 19 de septiembre de 2013, ISSN: 1738-494X, 1976-3824, DOI: 10.1007/s12206-013-0703-9.
BATISTA, R.C.; URQUIZA, S.S.: “El RCVV: Un enfoque diferente en el diagnóstico técnico.”, Ingeniería Mecánica, 3: 29–32, 2008, ISSN: 1815–5944.
CAMACHO, O.; PADILLA, D.; GOUVEIA, J.L.: “Diagnóstico de fallas utilizando técnicas estadísticas multivariantes”, Revista Técnica de la Facultad de Ingeniería Universidad del Zulia, 30(3): 253–262, 2007, ISSN: 0254-0770.
CIGOLINI, R.D. (ed.): Recent advances in maintenance and infrastructure management, no. solc. TS177 .R44 2009, Ed. Springer, London, 290 p., OCLC: ocn310400707, 2009, ISBN: 978-1-84882-488-1.
DENG, L.; ZHAO, R.: “Fault feature extraction of a rotor system based on local mean decomposition and Teager energy kurtosis”, Journal of Mechanical Science and Technology, 28(4): 1161-1169, 1 de mayo de 2014, ISSN: 1738-494X, 1976-3824, DOI: 10.1007/s12206-013-1149-9.
ESCALANTE, V.E.J.: Seis-sigma: metodología y técnica, Ed. Limusa-Noriega, México, 436 p., OCLC: 54022083, 2003, ISBN: 978-968-18-6391-3.
FIGLUS, T.; LIŠČÁK, Š.; WILK, A.; ŁAZARZ, B.: “Condition monitoring of engine timing system by using wavelet packet decomposition of a acoustic signal”, Journal of Mechanical Science and Technology, 28(5): 1663-1671, 20 de mayo de 2014, ISSN: 1738-494X, 1976-3824, DOI:10.1007/s12206-014-0311-3.
JINMING, L.; ZHENZHEN, L.; KANGLE, W.: “Fault Diagnosis of Diesel Engine Based on EMD and TFD”, [en línea], En: Jin, D. y Lin, S. (eds.),
Advances in Mechanical and Electronic Engineering, ser. Lecture Notes in Electrical Engineering, Ed. Springer Berlin Heidelberg, vol. 176, Berlin, Heidelberg, pp. 261-266, 2012, ISBN: 978-3-642-31506-0, Disponible en: http://link.springer.com/10.1007/978-3-642-31507-7, [Consulta: 3 de junio de 2016].
KATERIS, D.; MOSHOU, D.; PANTAZI, X.-E.; GRAVALOS, I.; SAWALHI, N.; LOUTRIDIS, S.: “A machine learning approach for the condition monitoring of rotating machinery”, Journal of Mechanical Science and Technology, 28(1): 61-71, 23 de enero de 2014, ISSN: 1738-494X, 1976-3824, DOI: 10.1007/s12206-013-1102-y.
KIM, H.C.; CHO, M.G.; SHIM, J.: “Multi-stage diagnostic system for reciprocating compressor using DTW technique”, Journal of Mechanical Science and Technology, 27(8): 2293-2298, 19 de septiembre de 2013, ISSN: 1738-494X, 1976-3824, DOI: 10.1007/s12206-013-0612-y.
LAROSE, D.T.: Discovering knowledge in data: an introduction to data mining, no. solc. QA76.9.D343 L38 2005, Ed. Wiley-Interscience, Hoboken, N.J, 222 p., 2005, ISBN: 978-0-471-66657-8.
LI, Z.; YAN, X.; YUAN, C.; PENG, Z.: “Intelligent fault diagnosis method for marine diesel engines using instantaneous angular speed”, Journal of Mechanical Science and Technology, 26(8): 2413-2423, 23 de agosto de 2012, ISSN: 1738-494X, 1976-3824, DOI: 10.1007/s12206-012-0621-2.
PORTEIRO, J.; COLLAZO, J.; PATIÑO, D.; MÍGUEZ, J.L.: “Diesel engine condition monitoring using a multi-net neural network system with nonintrusive sensors”, Applied Thermal Engineering, 31(17–18): 4097-4105, diciembre de 2011, ISSN: 1359-4311, DOI:10.1016/j.applthermaleng.2011.08.020.
SILVA, F. de la T.; MARÍN, E.P.; MESA, C.: “Técnica de monitorado continuo (on–line) para la evaluación del estado técnico de los turbogrupos de 64 y 100 MW.”, Ingeniería Mecánica, 2: 27–35, 2001, ISSN: 1815-5944.
ZHANG, F.; LIU, Y.; CHEN, C.; LI, Y.-F.; HUANG, H.-Z.: “Fault diagnosis of rotating machinery based on kernel density estimation and Kullback-Leibler divergence”, Journal of Mechanical Science and Technology, 28(11): 4441-4454, 2014, ISSN: 1738-494X, 1976-3824, DOI: 10.1007/s12206-014-1012-7