Maximización física y económica del agua de riego en la producción del cultivo del frijol
Main Article Content
Abstract
0,5 x 0,8 m. Una vez calibrado el modelo AquaCrop, se simularon los rendimientos del cultivo de frijol bajo diferentes niveles de agua disponible para obtener la función de producción con la cual se realizó la maximización física y económica del agua. El volumen de agua que garantiza un máximo físico es de 2 244,37 m3•ha-1 para la obtención de rendimientos de 2 406,51 kg•ha-1. El volumen de agua que garantiza el máximo económico es de 2 438,06 m3•ha-1 con lo cual se garantiza una ganancia de 47 010.38 $•ha-1.
Article Details
Those authors that have publications with this journal accept the following terms:
1. They will retain their copyright and guarantee the journal the right of first publication of their work, which will be simultaneously subject to the License Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows third parties to share the work whenever its author is indicated and its first publication this journal. Under this license the author will be free of:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
• NonCommercial — You may not use the material for commercial purposes.
• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
2. The authors may adopt other non-exclusive license agreements to distribute the published version of the work (e.g., deposit it in an institutional telematics file or publish it in a monographic volume) whenever the initial publication is indicated in this journal.
3. The authors are allowed and recommended disseminating their work through the Internet (e.g. in institutional telematics archives or on their website) before and during the submission process, which can produce interesting exchanges and increase the citations of the published work. (See the Effect of open access).
References
EFETHA, A., T. HARMS. y M. BANDARA: “Irrigation management practices for maximizing seed yield and water use efficiency of Othello
dry bean (Phaseolus vulgaris L.) in Southern Alberta, Canada”, Irrigation Science, ISSN: 0342-7188, 29:103-113, 2011.
FIGUEREDO, S. F., E. J. POZZEBON., J. A. FRIZZONE, J. A. AZEVEDO., A. F GUERRA. y E. M. SILVA: “Gerenciamento da irrigação do feijoeiro baseado em critérios técnicos e econômicos no cerrado”, Irriga, ISSN: 1808-3765, 13(): 378-391, 2008.
FREAITAS, P. S., L. REZENDE, R. MANTOVANI e C. EVERARDC: “Viabilidade de insercao dos efeitos da uniformidade de irrigacao em modelos de crescimento de culturéis”, Rev.Bras. Eng. Agríc. Ambient., ISSN:1807-1929, 7(3): 437-444, 2003.
GARCÍA–VILA, M., E. FERERES, L. MATEOS, F. ORGAR & P. STEDUTO: “Deficit irrigation optimization of cotton with AquaCrop”,
Agronomy Journal, ISSN: 1435-0645, 101: 477–487, 2009.
GONZÁLEZ, F. R., J. HERRERA., T. LÓPEZ. y G. CID.: “Funciones agua rendimiento para 14 cultivos agrícolas en condiciones del sur de
La Habana”, Revista Ciencias Técnicas Agropecuarias, ISSN: 1010-2760, E-ISSN: 2071-0054, 22(3): 2013.
INZUNZA-IBARRA, M. A., E. A. CATALÁN-VALENCIA, I. SÁNCHEZ-COHEN, M. VILLA-CASTORENA y A. ROMÁN-LÓPEZ: “Modelo de Producción de Trigo Bajo Déficit Hídrico en Dos Períodos de Crecimiento”, Terra Latinoamericana, E-ISSN: 2395-8030, 28: 335-344, 2010. LÓPEZ, A. R., M. A. IZUNZA, E. A. CATALÁN y S. MODOZA.: “Función de producción del frijol mediante la línea fuente de aspersión”,
Agrofaz, ISSN: 1665-8892, 6(1):30-35, 2006.
MARTÍN DE SANTA OLALLA, M. F., F. LÓPEZ. y A. CALERA.: Modelos para evaluación del uso y la productividad del agua de riego,
pp. 487-519, En: Agua y Agronomía. Capítulo XIII. Ediciones Mundi Prensa, ISBN: 84-84-76-246-7, Madrid, España, 2005. MASANGANISE, B., T. C. MHIZHA. & E. MASHONJOWA.: “Model Prediction of Maize Yield Responses to Climate Change in North-East-
ern Zimbabwe”, African Crop Science Journal, ISSN: 1021-9730, 20(2): 505–515, 2012.
MATEOS, L., E. C. MANTOVANI & F. J. VILLALOBOS: “Cotton response to non-uniformity of conventional sprinkler irrigation”, Irrigation
Science, ISSN: 0342-7188, 17:47-52, 1997.
NAZEER, M. y H. ALI: “Modeling the response of onion crop to deficit irrigation”, Journal of Agricultural Technology, ISSN: 1686-914, 8(1):
-402, 12012.
NLEYA, T. M., A. E. SLINKARD., A. VANDENBERG: “Differential performance of pinto bean under varying levels of soil water”, Can J Plant Sci., ISSN: 1665-8892, 81:233–239, 2001.
RAES, D., STEDUTO, P., T. C. HSIAO & E. FERERES: “AquaCrop—the FAO crop model to simulate yield response to water. II. Main algo- rithms and software description”, Agronomy Journal, ISSN: 1435-0645, 101: 438–477, 2012.
TRONCCLSO, C. y L. JAVIER: “Estimación de la función de producción del viñedo chileno de riego”, Agricultura Técnica, ISSN: 0365-2807,
(1): 70-81, 2001.
UCAR, Y., A. KADAYIFCI., H. İ. YILMAZ1, G. İ. TUYLU. & N. YARDIMCI.: “The effect of deficit irrigation on the grain yield of dry bean
(Phaseolus vulgaris L.) in semiarid regions”, Spanish Journal of Agricultural Research, ISSN: 1695-971-X, 7(2): 474-485, 2009.