Multispectral Image Processing to Assess Sugarcane Nitrogen Needs
Main Article Content
Abstract
Population growth has led to an exponential demand for agricultural products, to meet this demand it is necessary to improve management and achieve efficient use of resources without compromising the sustainability of ecosystems, particularly agricultural ones. One of the technologies that facilitate these tasks is precision agriculture (PA), which focuses on the optimization of resources and inputs based on the compilation of precise and timely geo-information of variables of agricultural interest with high spatio-temporal variability, obtained through remote sensors of three types: images captured by satellites or airplanes, images obtained from manned and unmanned aerial vehicles (UAVs) and specific information with sensors mounted on machinery or in the field. These limitations were overcome by using multispectral images, which has increased applications for agricultural purposes. Currently, multispectral images allow quantifying soil moisture, monitoring the presence of droughts and the degree of crop water stress, estimating the temporal and spatial variability of evapotranspiration, monitoring phenology, detecting nutritional deficiencies, estimating the degree of weed infestation. and insects, calculate organic carbon and soil salinity, and estimate yields and agricultural production. The use of geospatial technologies in the PA has changed the paradigm of agriculture and today constitutes a viable alternative to face the challenges that food production demands in a world with high climate variability.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Those authors that have publications with this journal accept the following terms:
1. They will retain their copyright and guarantee the journal the right of first publication of their work, which will be simultaneously subject to the License Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows third parties to share the work whenever its author is indicated and its first publication this journal. Under this license the author will be free of:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
• NonCommercial — You may not use the material for commercial purposes.
• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
2. The authors may adopt other non-exclusive license agreements to distribute the published version of the work (e.g., deposit it in an institutional telematics file or publish it in a monographic volume) whenever the initial publication is indicated in this journal.
3. The authors are allowed and recommended disseminating their work through the Internet (e.g. in institutional telematics archives or on their website) before and during the submission process, which can produce interesting exchanges and increase the citations of the published work. (See the Effect of open access).
References
BASSO, B.: Perspectivas y avances del uso de UAV en AP en USA, Curso Internacional de Agricultura de Precisión ed., vol. 13, Manfredi, Córdoba, Argentina, 9, 24-25, p., 2014.
BEST, S.; LEÓN, L.; FLORES, F.; AGUILERA, H.; QUINTANA, R.; CONCHA, V.: Handbook “Agricultura de Precisión”, [en línea], Ed. Progap – INIA (Programa de Agricultura de Precisión), Progap-INIA. ed., 2011, Disponible en: http://www.elsitioagricola.com/CultivosExtensivos/LibroIniaAP/lil ib3.asp.
BLACKMORE, S.: The role of yield maps in precision farming, Cranfield University, Silsoe, England, Tesis doctoral, Silsoe, England, Publisher: Cranfield University Silsoe, UK p., 2003.
BONGIOVANNI, R.; CHARTUNI, E.; BEST, S.; ROEL, Á.: Agricultura de precisión: Integrando conocimientos para una agricultura moderna y sustentable. Programa Cooperativo para el Desarrollo Tecnológico Agroalimentario y Agroindustrial del Cono Sur;, Inst. Instituto Interamericano de Cooperación para la Agricultura, Procisur/IICA, 2006.
CANDIAGO, S.; REMONDINO, F.; DE GIGLIO, M.; DUBBINI, M.; GATTELLI, M.: “Evaluating multispectral images and vegetation indices for precision farming applications from UAV images”, Remote sensing, 7(4): 4026-4047, 2015, ISSN: 2072-4292, Publisher: Multidisciplinary Digital Publishing Institute.
CETIN, H.; PAFFORD, J.; MUELLER, T.: “Precision agriculture using hyperspectral remote sensing and GIS”, En: Proceedings of 2nd International Conference on Recent Advances in Space Technologies, 2005. RAST 2005., Ed. IEEE, pp. 70-77, 2005, ISBN: 0-7803-8977-8.
CHUVIECO, E.: “Mirar desde el espacio o mirar hacia otro lado: tendencias en teledetección y su situación en la geografía española”, Documents d’anàlisi geogràfica, (50): 75-85, 2007, ISSN: 2014-4512.
COLAIZZI, P.D.; BARNES, E.M.; CLARKE, T.R.; CHOI, C.Y.; WALLER, P.M.: “Estimating soil moisture under low frequency surface irrigation using crop water stress index”, Journal of irrigation and drainage engineering, 129(1): 27-35, 2003, ISSN: 0733-9437, Publisher: American Society of Civil Engineers.
FISHER, P.; UNWIN, D.: Re-presenting geographical information systems, Ed. Re–presenting GIS. London: Wiley, London, England, 1-17 p., 2005.
GAGO, J.; DOUTHE, C.; COOPMAN, R.E.; GALLEGO, P.P.; RIBAS-CARBO, M.; FLEXAS, J.; ESCALONA, J.; MEDRANO, H.: “UAVs challenge to assess water stress for sustainable agriculture”, Agricultural Water Management, 153: 9-19, 2015, ISSN: 0378-3774, Publisher: Elsevier.
GARCÍA, C.; HERRERA, F.: “Percepción remota en cultivos de caña de azúcar usando una cámara multiespectral en vehículos aéreos no tripulados”, En: Anais Simposio Brasileiro de sensoramiento remoto-SBSR (17, 2015, João Pessoa-PB, Brasil). Memoria. Brasil, João Pessoa-PB, Brasil, pp. 4450-4457, 2015.
GARCÍA-CERVIGÓN, J.J.D.: Estudio de índices de vegetación a partir de imágenes aéreas tomadas desde UAS/RPAS y aplicaciones de éstos a la agricultura de precisión., Inst. Universidad Complutense de Madrid, Madrid, España, 2015.
GATES, D.M.; KEEGAN, H.J.; SCHLETER, J.C.; WEIDNER, V.R.: “Spectral properties of plants”, Applied optics, 4(1): 11-20, Publisher: Optica Publishing Group, 1965, ISSN: 2155-3165.
GITELSON, A.A.; MERZLYAK, M.N.: “Remote estimation of chlorophyll content in higher plant leaves”, International journal of remote sensing, 18(12): 2691-2697, 1997, ISSN: 0143-1161.
GUTIERREZ-RODRIGUEZ, M.; ESCALANTE-ESTRADA, J.A.; RODRIGUEZ-GONZALEZ, M.T.: “Canopy reflectance, stomatal conductance, and yield of Phaseolus vulgaris L. and Phaseolus coccinues L. under saline field conditions”, International Journal of Agriculture and Biology, 7: 491-494, 2005.
HIDALGO-TOGORES, J.: La calidad del vino desde el viñedo, Ed. Mundi-Prensa Libros, Madrid, España, 2006, ISBN: 84-8476-462-1.
LOPES, M.S.; REYNOLDS, M.P.: “Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology”, Journal of Experimental Botany, 63(10): 3789-3798, 2012, ISSN: 1460-2431, Publisher: Oxford University Press.
QUEBRAJO-MOYA, L.; EGEA-CEGARRA, G.; PÉREZ-RUIZ, M.; PÉREZ-URRESTARAZU, L.: “Uso de imágenes térmicas aéreas en remolacha azucarera (Beta vulgaris) para propuesta de riego de precisión”, En: XXXIV Congreso Nacional de Riegos, Sevilla 2016, Ed. Escuela Universitaria de Ingeniería Técnica Agrícola, Sevilla, España, 2016.
RAHMAN, M.; ISLAM, A.; RAHMAN M, A.: “NDVI derived sugarcane area identification and crop condition assessment [J]”, Plan Plus, 1(2): 1-12, 2004.
REES, S.; DOYLE, R.: “Effect of soil properties on Pinot Noir vine vigour and root distribution in Tasmanian vineyards”, En: 19th World Congress of Soil Science, Soil Solutions for a Changing World, pp. 1-6, 2010.
SÁIZ-RUBIO, V.; ROVIRA-MÁS, F.: “Dynamic segmentation to estimate vine vigor from ground images”, Spanish Journal of Agricultural Research, 10(3): 596-604, 2012, ISSN: 1695-971X, Publisher: Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA).
TARDÁGUILA, J.; BARRAGÁN, F.; YANGUAS, R.; DIAGO, M.: “Estimación de la variabilidad del vigor del viñedo a través de un sensor óptico lateral terrestre. Aplicación en la viticultura de precisión”, En: VI Foro Mundial del Vino. Logroño, 23-25 abril 2008, World Wine Forum", Logroño. Spain, 2008.
TIAN, L.: “Development of a sensor-based precision herbicide application system”, Computers and electronics in agriculture, 36(2-3): 133-149, 2002, ISSN: 0168-1699, Publisher: Elsevier.
TORRES-SÁNCHEZ, J.; PEÑA-BARRAGÁN, J.; GÓMEZ-CANDÓN, D.; DE CASTRO, A.; LÓPEZ-GRANADOS, F.: “Imagery from unmanned aerial vehicles for early site specific weed management”, En: Precision agriculture’13, Ed. Springer, pp. 193-199, 2013.
TOWERS, P.; VON MARTINI, A.: Conceptos iniciales sobre teledetección y su aplicación al Agro, [en línea], Buenos Aires. Argentina, 2002, Disponible en: http://www.elsitioagricola.com/Soft/agrisat/libroTeledeteccion.a sp.
VARVEL, G.E.; SCHEPERS, J.S.; FRANCIS, D.D.: “Ability for in‐season correction of nitrogen deficiency in corn using chlorophyll meters”, Soil Science Society of America Journal, 61(4): 1233-1239, 1997, ISSN: 0361-5995, Publisher: Wiley Online Library.
VIRLET, N.; COSTES, E.; MARTINEZ, S.; KELNER, J.J.; REGNARD, J.L.: “Multispectral airborne imagery in the field reveals genetic determinisms of morphological and transpiration traits of an apple tree hybrid population in response to water deficit”, Journal of Experimental Botany, 66(18): 5453-5465, 2015, ISSN: 1460-2431, Publisher: Oxford University Press UK.
WEEKLEY, J.G.: Multispectral imaging techniques for monitoring vegetative growth and health, Virginia Polytechnic Institute and State University, Thesis of Máster, Virginia, USA, Publisher: Virginia Tech p., publisher: Virginia Tech, 2007.
ZARCO-TEJADA, P.J.; MILLER, R.J.; NOLAND, T.L.; MOHAMMED, H.G.; SAMPSON, H.P.: “Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data”, IEEE Transactions on Geoscience and Remote Sensing, 39(7): 1491-1507, 2001, ISSN: 0196-2892.