Procesamiento de imágenes multiespectrales para evaluar necesidades de Nitrógeno de caña de azúcar

Contenido principal del artículo

Carlos Fresneda-Quintana
Arturo Martínez-Rodríguez
Alexander Laffita-Leyva
Odalys Zamora-Díaz

Resumen

El crecimiento poblacional ha derivado en una demanda exponencial de productos agrícolas, para cubrir esta demanda se requiere mejorar la gestión y lograr un uso eficiente de recursos sin comprometer la sustentabilidad de los ecosistemas, en particular los agrícolas. Una de las tecnologías que facilitan estas tareas es la agricultura de precisión (AP), que se enfoca en la optimización de recursos e insumos basado en la compilación de geo información precisa y oportuna de variables de interés agrícola de alta variabilidad espacio-temporal, obtenida mediante sensores remotos de tres tipos: imágenes capturadas por satélites o aviones, imágenes obtenidas desde vehículos aéreos tripulados y no tripulados (VANT’s) e información puntual con sensores montados en maquinaria o en campo. Estas limitantes se superaron al usar imágenes multiespectrales, lo que ha incrementado las aplicaciones con fines agrícolas. Actualmente, las mágenes multiespectrales permiten cuantificar la humedad del suelo, monitorear la presencia de sequías y el grado de estrés hídrico de cultivos, estimar la variabilidad temporal y espacial de la evapotranspiración, dar seguimiento fenológico, detectar deficiencias nutricionales, estimar grado de infestación de malezas e insectos, calcular carbono orgánico y salinidad del suelo y estimar rendimientos y producción agrícola. El uso de tecnologías geoespaciales en la AP ha cambiado el paradigma de la agricultura y hoy en día constituye una alternativa viable para afrontar los retos que demanda la producción de alimentos en un mundo con alta variabilidad climática.

Detalles del artículo

Cómo citar
Fresneda-Quintana, C., Martínez-Rodríguez, A., Laffita-Leyva, A., & Zamora-Díaz, O. (2024). Procesamiento de imágenes multiespectrales para evaluar necesidades de Nitrógeno de caña de azúcar. Revista Ciencias Técnicas Agropecuarias, 33(1), https://cu-id.com/2177/v33n1e08. Recuperado a partir de https://revistas.unah.edu.cu/index.php/rcta/article/view/1846
Sección
Revisión

Citas

BASSO, B.: Perspectivas y avances del uso de UAV en AP en USA, Curso Internacional de Agricultura de Precisión ed., vol. 13, Manfredi, Córdoba, Argentina, 9, 24-25, p., 2014.

BEST, S.; LEÓN, L.; FLORES, F.; AGUILERA, H.; QUINTANA, R.; CONCHA, V.: Handbook “Agricultura de Precisión”, [en línea], Ed. Progap – INIA (Programa de Agricultura de Precisión), Progap-INIA. ed., 2011, Disponible en: http://www.elsitioagricola.com/CultivosExtensivos/LibroIniaAP/lil ib3.asp.

BLACKMORE, S.: The role of yield maps in precision farming, Cranfield University, Silsoe, England, Tesis doctoral, Silsoe, England, Publisher: Cranfield University Silsoe, UK p., 2003.

BONGIOVANNI, R.; CHARTUNI, E.; BEST, S.; ROEL, Á.: Agricultura de precisión: Integrando conocimientos para una agricultura moderna y sustentable. Programa Cooperativo para el Desarrollo Tecnológico Agroalimentario y Agroindustrial del Cono Sur;, Inst. Instituto Interamericano de Cooperación para la Agricultura, Procisur/IICA, 2006.

CANDIAGO, S.; REMONDINO, F.; DE GIGLIO, M.; DUBBINI, M.; GATTELLI, M.: “Evaluating multispectral images and vegetation indices for precision farming applications from UAV images”, Remote sensing, 7(4): 4026-4047, 2015, ISSN: 2072-4292, Publisher: Multidisciplinary Digital Publishing Institute.

CETIN, H.; PAFFORD, J.; MUELLER, T.: “Precision agriculture using hyperspectral remote sensing and GIS”, En: Proceedings of 2nd International Conference on Recent Advances in Space Technologies, 2005. RAST 2005., Ed. IEEE, pp. 70-77, 2005, ISBN: 0-7803-8977-8.

CHUVIECO, E.: “Mirar desde el espacio o mirar hacia otro lado: tendencias en teledetección y su situación en la geografía española”, Documents d’anàlisi geogràfica, (50): 75-85, 2007, ISSN: 2014-4512.

COLAIZZI, P.D.; BARNES, E.M.; CLARKE, T.R.; CHOI, C.Y.; WALLER, P.M.: “Estimating soil moisture under low frequency surface irrigation using crop water stress index”, Journal of irrigation and drainage engineering, 129(1): 27-35, 2003, ISSN: 0733-9437, Publisher: American Society of Civil Engineers.

FISHER, P.; UNWIN, D.: Re-presenting geographical information systems, Ed. Re–presenting GIS. London: Wiley, London, England, 1-17 p., 2005.

GAGO, J.; DOUTHE, C.; COOPMAN, R.E.; GALLEGO, P.P.; RIBAS-CARBO, M.; FLEXAS, J.; ESCALONA, J.; MEDRANO, H.: “UAVs challenge to assess water stress for sustainable agriculture”, Agricultural Water Management, 153: 9-19, 2015, ISSN: 0378-3774, Publisher: Elsevier.

GARCÍA, C.; HERRERA, F.: “Percepción remota en cultivos de caña de azúcar usando una cámara multiespectral en vehículos aéreos no tripulados”, En: Anais Simposio Brasileiro de sensoramiento remoto-SBSR (17, 2015, João Pessoa-PB, Brasil). Memoria. Brasil, João Pessoa-PB, Brasil, pp. 4450-4457, 2015.

GARCÍA-CERVIGÓN, J.J.D.: Estudio de índices de vegetación a partir de imágenes aéreas tomadas desde UAS/RPAS y aplicaciones de éstos a la agricultura de precisión., Inst. Universidad Complutense de Madrid, Madrid, España, 2015.

GATES, D.M.; KEEGAN, H.J.; SCHLETER, J.C.; WEIDNER, V.R.: “Spectral properties of plants”, Applied optics, 4(1): 11-20, Publisher: Optica Publishing Group, 1965, ISSN: 2155-3165.

GITELSON, A.A.; MERZLYAK, M.N.: “Remote estimation of chlorophyll content in higher plant leaves”, International journal of remote sensing, 18(12): 2691-2697, 1997, ISSN: 0143-1161.

GUTIERREZ-RODRIGUEZ, M.; ESCALANTE-ESTRADA, J.A.; RODRIGUEZ-GONZALEZ, M.T.: “Canopy reflectance, stomatal conductance, and yield of Phaseolus vulgaris L. and Phaseolus coccinues L. under saline field conditions”, International Journal of Agriculture and Biology, 7: 491-494, 2005.

HIDALGO-TOGORES, J.: La calidad del vino desde el viñedo, Ed. Mundi-Prensa Libros, Madrid, España, 2006, ISBN: 84-8476-462-1.

LOPES, M.S.; REYNOLDS, M.P.: “Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology”, Journal of Experimental Botany, 63(10): 3789-3798, 2012, ISSN: 1460-2431, Publisher: Oxford University Press.

QUEBRAJO-MOYA, L.; EGEA-CEGARRA, G.; PÉREZ-RUIZ, M.; PÉREZ-URRESTARAZU, L.: “Uso de imágenes térmicas aéreas en remolacha azucarera (Beta vulgaris) para propuesta de riego de precisión”, En: XXXIV Congreso Nacional de Riegos, Sevilla 2016, Ed. Escuela Universitaria de Ingeniería Técnica Agrícola, Sevilla, España, 2016.

RAHMAN, M.; ISLAM, A.; RAHMAN M, A.: “NDVI derived sugarcane area identification and crop condition assessment [J]”, Plan Plus, 1(2): 1-12, 2004.

REES, S.; DOYLE, R.: “Effect of soil properties on Pinot Noir vine vigour and root distribution in Tasmanian vineyards”, En: 19th World Congress of Soil Science, Soil Solutions for a Changing World, pp. 1-6, 2010.

SÁIZ-RUBIO, V.; ROVIRA-MÁS, F.: “Dynamic segmentation to estimate vine vigor from ground images”, Spanish Journal of Agricultural Research, 10(3): 596-604, 2012, ISSN: 1695-971X, Publisher: Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA).

TARDÁGUILA, J.; BARRAGÁN, F.; YANGUAS, R.; DIAGO, M.: “Estimación de la variabilidad del vigor del viñedo a través de un sensor óptico lateral terrestre. Aplicación en la viticultura de precisión”, En: VI Foro Mundial del Vino. Logroño, 23-25 abril 2008, World Wine Forum", Logroño. Spain, 2008.

TIAN, L.: “Development of a sensor-based precision herbicide application system”, Computers and electronics in agriculture, 36(2-3): 133-149, 2002, ISSN: 0168-1699, Publisher: Elsevier.

TORRES-SÁNCHEZ, J.; PEÑA-BARRAGÁN, J.; GÓMEZ-CANDÓN, D.; DE CASTRO, A.; LÓPEZ-GRANADOS, F.: “Imagery from unmanned aerial vehicles for early site specific weed management”, En: Precision agriculture’13, Ed. Springer, pp. 193-199, 2013.

TOWERS, P.; VON MARTINI, A.: Conceptos iniciales sobre teledetección y su aplicación al Agro, [en línea], Buenos Aires. Argentina, 2002, Disponible en: http://www.elsitioagricola.com/Soft/agrisat/libroTeledeteccion.a sp.

VARVEL, G.E.; SCHEPERS, J.S.; FRANCIS, D.D.: “Ability for in‐season correction of nitrogen deficiency in corn using chlorophyll meters”, Soil Science Society of America Journal, 61(4): 1233-1239, 1997, ISSN: 0361-5995, Publisher: Wiley Online Library.

VIRLET, N.; COSTES, E.; MARTINEZ, S.; KELNER, J.J.; REGNARD, J.L.: “Multispectral airborne imagery in the field reveals genetic determinisms of morphological and transpiration traits of an apple tree hybrid population in response to water deficit”, Journal of Experimental Botany, 66(18): 5453-5465, 2015, ISSN: 1460-2431, Publisher: Oxford University Press UK.

WEEKLEY, J.G.: Multispectral imaging techniques for monitoring vegetative growth and health, Virginia Polytechnic Institute and State University, Thesis of Máster, Virginia, USA, Publisher: Virginia Tech p., publisher: Virginia Tech, 2007.

ZARCO-TEJADA, P.J.; MILLER, R.J.; NOLAND, T.L.; MOHAMMED, H.G.; SAMPSON, H.P.: “Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data”, IEEE Transactions on Geoscience and Remote Sensing, 39(7): 1491-1507, 2001, ISSN: 0196-2892.

Artículos más leídos del mismo autor/a

<< < 1 2