Evaluación del potencial de las series temporales para predecir las propiedades de calidad de la guayaba (Psidium guajava L), variedad enana roja EEA 1-23, durante su conservación a temperatura ambiente
Main Article Content
Abstract
Las técnicas de análisis estadísticos representan una novedosa alternativa que se complementa con la utilización de tecnologías no destructivas aplicadas durante el monitoreo del cambio de propiedades de frutas y vegetales durante su almacenamiento. El presente trabajo tiene como objetivo evaluar el potencial de las series temporales para predecir las propiedades de calidad de la guayaba, durante su conservación a temperatura ambiente. Para ello se realizó un análisis de los resultados obtenidos en trabajos que conciernen a esta temática los cuales poseen cierto reconocimiento internacional donde, para obtener los modelos de predicción para SSC, pH, firmeza y perdida de peso (25 guayabas), se relacionaron los valores reales del contenido de cada propiedad obtenidos a partir de las técnicas tradicionales con los datos predichos utilizando el software especializado Statgraphics 5.1. Como resultado principal se obtuvo que las series temporales suelen ser una herramienta capaz de predecir propiedades de calidad de las frutas para obtener en tiempo real el estado optimo de la guayaba.
Article Details
Those authors that have publications with this journal accept the following terms:
1. They will retain their copyright and guarantee the journal the right of first publication of their work, which will be simultaneously subject to the License Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows third parties to share the work whenever its author is indicated and its first publication this journal. Under this license the author will be free of:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
• NonCommercial — You may not use the material for commercial purposes.
• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
2. The authors may adopt other non-exclusive license agreements to distribute the published version of the work (e.g., deposit it in an institutional telematics file or publish it in a monographic volume) whenever the initial publication is indicated in this journal.
3. The authors are allowed and recommended disseminating their work through the Internet (e.g. in institutional telematics archives or on their website) before and during the submission process, which can produce interesting exchanges and increase the citations of the published work. (See the Effect of open access).