Theoretical Bases for Exergetic Analysis of a Flat Plate Solar Collector with Forced Draft
Main Article Content
Abstract
In the present paper, theoretical basis for the exergy analysis of solar flat plate collectors with forced draft used in drying and dehydration of agricultural products are exposed. This analysis starts from the discussion of the theoretical elements that are included in the realization of the energy balance of solar flat plate collectors and forced draft. Later the elements to consider for implementing the exergy balance of these types of collectors were analyzed. The results allowed defining the methodological procedure for the realization of exergy analysis of solar collectors. In addition, the variables or factors that determine the energy efficiency were defined, as well as the causes and factors that cause energy losses. Finally, the method proposed by Pons (2012) was defined as the most suitable for determining the exergy of solar radiation reaching the earth's surface.
Article Details
Those authors that have publications with this journal accept the following terms:
1. They will retain their copyright and guarantee the journal the right of first publication of their work, which will be simultaneously subject to the License Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows third parties to share the work whenever its author is indicated and its first publication this journal. Under this license the author will be free of:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
• NonCommercial — You may not use the material for commercial purposes.
• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
2. The authors may adopt other non-exclusive license agreements to distribute the published version of the work (e.g., deposit it in an institutional telematics file or publish it in a monographic volume) whenever the initial publication is indicated in this journal.
3. The authors are allowed and recommended disseminating their work through the Internet (e.g. in institutional telematics archives or on their website) before and during the submission process, which can produce interesting exchanges and increase the citations of the published work. (See the Effect of open access).
References
ABUŞKA, M.; AKGÜL, B.; ALTINTAŞ, V.: Artificial Neural Network Modeling of the Thermal Performance of a Novel Solar Air Absorber Plate, Inst. ISITES, Valencia -Spain, 2015.
AKPINAR, E.K.; KOÇYIĞIT, F.: “Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates”, Applied Energy, 87(11): 3438–3450, 2010, DOI: http://dx.doi.org/10.1016/j.apenergy.2010.05.017.
AMMARI, H.D.: “A mathematical model of thermal performance of a solar air heater with slats”, Renewable Energy, 28(10): 1597–1615, 2003.
ARELLANO-ESCUDERO, N.: La ingeniería y el descarte artefactual de la desalación solar de agua: las industrias de Las Salinas, Sierra Gorda y Oficina Domeyko (1872-1907), Universidad Politécnica de Cataluña, Tesis presentada para optar al grado de Doctor, Barcelona, España, 2015.
BOUADILA, S.; LAZAAR, M.; SKOURI, S.; KOOLI, S.; FARHAT, A.: “Energy and exergy analysis of a new solar air heater with latent storage energy”, international journal of hydrogen energy, 39(27): 15266–15274, 2014, DOI: http://dx.doi.org/10.1016/j.ijhydene.2014.04.074.
CHAMOLI, S.: “Exergy analysis of a flat plate solar collector”, Journal of Energy in Southern Africa, 24(3): 08–13, 2013, ISSN: 1021-447X.
DÍAZ MARCANO, A.: Diseño de una instalación solar fotovoltaica aislada para una huerta ecológica, Universidad de Cantabria, Tesis para acceder al título de Ing. Técnico Industrial, España, 2012.
DUFFIE, J.A.; BECKMAN, W.A.: Solar engineering of thermal processes, Ed. John Wiley & Sons, 2013.
DURÁN, G.J.; CONDORI, M.A.: “Mecánica Computacional, Volume XXXI. Number 12. Heat Transfer (A)”, 2012.
ESEN, H.; OZGEN, F.; ESEN, M.; SENGUR, A.: “Artificial neural network and wavelet neural network approaches for modelling of a solar air heater”, Expert systems with applications, 36(8): 11240–11248, 2009.
ESTEBAN BIESCAS, S.: Actuaciones de un colector solar de aire para secado de productos agrícolas en países en vías de desarrollo, Escuela Politécnica Superior, B.S. thesis, Madrid, España, 2015.
GHIAMI, A.; KIANIFAR, A.; ARYANA, K.; EDALATPOUR, M.: “Energy and Exergy Analysis of a Single-Pass Sequenced Array Baffled Solar Air Heater with Packed Bed Latent Storage Unit for Nocturnal Use”, Heat Transfer—Asian Research, 46(6): 546–568, 2017.
GONZÁLEZ, S.M.; LARSEN, S.F.; HERNÁNDEZ, A.: Simulación del comportamiento térmico de un colector solar de aire de doble flujo mediante el software SIMUSOL, Inst. ASADES, 2012.
JAFARKAZEMI, F.; ABDI, H.: “Energy and exergy efficiency of heat pipe evacuated tube solar collectors”, Thermal Science, 20(1): 327-335, 2016, DOI: 10.2298/TSCI130227150J.
KALOGIROU, S.A.: Solar energy engineering: processes and systems, Ed. Academic Press, 2013.
KURTBAS, I.; DURMUS̨, A.: “Efficiency and exergy analysis of a new solar air heater”, Renewable Energy, 29(9): 1489–1501, 2004, ISSN: 0960-1481.
LIU, Z.; LIU, K.; LI, H.; ZHANG, X.; JIN, G.; CHENG, K.: “Artificial neural networks-based software for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters”, PloS one, 10(12): 16, 2015, ISSN: 1932-6203, DOI: doi:10.1371/journal.pone.0143624.
LLOSAS, Y.; HARO, A.; SÁNCHEZ, U.; AUDELO, M.: “Modelo matemático de un colector solar bajo las condiciones físicas Y meteorológicas de la ciudad de Riobamba”, Perfiles, 2(12): 15-24, 2014.
LÓPEZ MARTÍNEZ DE GUEREÑU, R.: Simulación y optimización del captador de un secadero solar, Universidad Carlos III de Madrid Escuela Politécnica Superior, Master’s Thesis, Madrid, España, 2012.
MARATHE, A.P.; JOSHI, S.M.; THOKAL, G.N.: “Mathematical Modelling of Solar Air Heater”, Mathematical Modelling, 3(3): 1000–1010, 2013.
MARROQUÍN, A.D.J.; OLIVARES, M.J.; JIMÉNEZ, O.; ZAMORA, A.; ENCINAS, A.: “Analysis of Flow and Heat Transfer in a Flat Solar Collector with Rectangular and Cylindrical Geometry Using CFD”, Ingeniería, Investigación y Tecnología, 14(4): 553-561, 2013, DOI: http://dx.doi.org/10.1016/S1405-7743(13)72265-0.
MOUMMI, M.; YOUCEF-ALI, S.; MOUMMI, A.; DESMONS, J.Y.: “Energy analysis of a solar air collector with rows of fin”, Renewable Energy, 29: 2053-2064, 2004, ISSN: 0960-1481.
OMOJARO, P.; NWULU, N.I.; ILKAN, M.: “Deploying an Artificial Neural Network Model for Solar Air Heating Modelling”, Information, 6(5): 3249-3257, 2013, ISSN: 1463-6697.
OZTOP, H.F.; BAYRAK, F.; HEPBASLI, A.: “Energetic and exergetic aspects of solar air heating (solar collector) systems”, Renewable and Sustainable Energy Reviews, 21: 59–83, 2013.
ROMDHANE, B.S.: “The air solar collectors: comparative study, introduction of baffles to favor the heat transfer”, Solar Energy, 81(1): 139–149, 2007, ISSN: 0038-092X.
SAHU, M.K.; PRASAD, R.K.: “Exergy based performance evaluation of solar air heater with arc-shaped wire roughened absorber plate”, Renewable Energy, 96: 233–243, 2016.
SALAME, C.; AILLERIE, M.; PAPAGEORGAS, P.; A. BOULEMTAFES-BOUKADOUM; BENZAOUI, A.: “Analysis of Heat Transfer Enhancement in Solar Air Heater Provided with Transverse Rectangular Ribs”, Energy Procedia, 50: 761-772, 2014, DOI: http://dx.doi.org/10.1016/j.egypro.2014.06.094.
SINGH, S.; DHIMAN, P.: “Exergoeconomic analysis of recyclic packed bed solar air heater-sustained air heating system for buildings”, Journal of Energy Storage, 5: 33–47, 2016.
SUZUKI, A.: “A fundamental equation for exergy balance on solar collectors”, Journal of solar energy engineering, 110(2): 102–106, 1988, ISSN: 0199-6231.
TAPAS, V.; SAO, A.K.; SHARMA, P.: “Computational Analysis of an artificial roughened surface of Solar Air heater”, International Journal of Innovative Research in Science, Engineering and Technology, 4(15): 12205-12212, 2015, DOI: 10.15680/IJIRSET.2015.0412092.
UPPAL, A.; KUMAR, V.; SINGH, C.: “CFD Analysis of Heat Transfer Enhancement in a Heat Exchanger Using Various Baffle Arrangements”, International Journal of Research in Mechanical Engineering & Technology, 4(2), 2014.
YADAV, A.S.; SAMANT, T.S.; VARSHNEY, L.: “A CFD based analysis of solar air heater having v-shaped perforated blocks on absorber plate”, Int. Res. J. Eng. Tech, 2: 822–829, 2015.