Diferentes métodos estadísticos para el análisis de variables discretas. Una aplicación en las ciencias agrícolas y técnicas
Main Article Content
Resumo
El objetivo del presente trabajo fue evaluar tres métodos estadísticos para el análisis de variables discretas. La información empleada proviene de un experimento desarrollado en la Empresa Genética Camilo Cienfuegos, de la provincia de Pinar del Río en el período 2007-2008, relacionada con la producción de CT-115. Se analizaron tres muestreos, como caso de estudio se seleccionó el muestreo dos que comprendió los meses junio-julio 2007, se empleó un diseño completamente aleatorizado con tres tratamientos y 10 repeticiones. Las variables analizadas fueron: No. tallos, No. rebrotes, No. hojas totales/tallos, No. hojas totales/rebrotes, No. hojas secas/tallos y No. hojas secas/rebrotes. Se tuvo en cuenta el Análisis de Varianza paramétrico, su homólogo no paramétrico la dócima Kruskal–Wallis y Modelo Lineal Generalizado. Se verificó el cumplimiento de los supuestos teóricos del Análisis de Varianza, para la normalidad de los errores se utilizaron las dócimas Shapiro Wilk, Kolmogorov Smirnov y Lilliefors, la dócima de Shapiro Wilk fue la más robusta para detectar la falta de normalidad, para la homogeneidad de varianza se emplearon las dócimas de Bartlett y Levene, ambas obtuvieron resultados similares. Las variables se transformaron según raíz cuadrada, la cual no mejoró el cumplimiento de distribución Normal para la variable No. hojas secas/rebrotes. Los valores de probabilidad obtenidos mantuvieron el mismo criterio de decisión con respecto a Ho para ambas dócimas, la no paramétrica Kruskal- Wallis comparado con su homóloga paramétrica la dócima F de Fisher. Los criterios de bondad de ajuste utilizados en el Modelo Lineal Generalizado permitieron conocer los efectos de mejor ajuste, Se considero que este modelo es más flexible que el Análisis de Varianza paramétrico, pues las variables en estudio no requiere del cumplimientos de los supuestos teóricos básicos.
Article Details
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).