Differentiation of five commercial cultivars of Saccharum spp. using computational methods of VIS-NIR spectral analysis

Main Article Content

Katia Ojito-Ramos
Hilda Kirenia Barrientos-Brito
Osmany de la C. Aday-Díaz
Rubén Orozco-Morales
Luís Hernández-Santana

Resumo

Precision agriculture is applied to manage spatial variability in agricultural fields and optimize production. The objective of this study was to differentiate five commercial cultivars of Saccharum spp. (sugarcane) through computational spectral analysis methods. The vegetal material samples were collected in experimental areas of the Sugarcane Research Institute, located in the municipality of Ranchuelo, Villa Clara, Cuba. The commercial cultivars of Saccharum spp. were selected based on their characteristics and importance in Cuba; ‘Ja60-5’, ‘C10-171’, ‘C90-176’, ‘C1051-73’, and ‘C86-12’ were evaluated. The study focused on the spectral reflectance properties of the cultivars, using the first derivative method and ten spectral matching measures for analysis. It was identified that at 526.2 nm, 723.8 nm, and 1,399 nm, there are differences in the spectral characteristics gradients among the cultivars studied.

Article Details

Como Citar
Ojito-Ramos, K., Barrientos-Brito, H. K., Aday-Díaz, O. de la C., Orozco-Morales, R., & Hernández-Santana, L. (2025). Differentiation of five commercial cultivars of Saccharum spp. using computational methods of VIS-NIR spectral analysis. Revista Ciencias Técnicas Agropecuarias, 34, https://cu-id.com/2177/v34e37. Obtido de https://revistas.unah.edu.cu/index.php/rcta/article/view/2199
Secção
Artículos Originales

Referências

ABOELGHAR, M.A.; KHDERY, G.A.: “Spectroscopic and morphological characteristics of genus Jatropha (Euphorbiaceae) and genus Jojoba (Simmondsiaceae)”, Asian Journal of Agriculture and Biology, 5(04), 2017, ISSN: 2307-8553.

ABRIL-GONZÁLEZ, A.; RAMIL-MESA, M.; MILÁN, D.A.; CAMPO-ZABALA, R.: “Caña energética como combustible de calderas de biomasa. Propuesta de precio como alternativa al petróleo y al carbón”, Icidca, 53: 9, 2019.

AGARLA, M.; BIANCO, S.; CELONA, L.; SCHETTINI, R.; TCHOBANOU, M.: “An analysis of spectral similarity measures”, En: Color and Imaging Conference, Ed. Society for Imaging Science and Technology, vol. 29, pp. 300-305, 2021, ISBN: 2166-9635.

BORSOI, R.A.; IMBIRIBA, T.; BERMUDEZ, J.C.M.; RICHARD, C.; CHANUSSOT, J.; DRUMETZ, L.; TOURNERET, J.-Y.; ZARE, A.; JUTTEN, C.: “Spectral variability in hyperspectral data unmixing: A comprehensive review”, IEEE geoscience and remote sensing magazine, 9(4): 223-270, 2021, ISSN: 2168-6831.

CAMARGO-HERNÁNDEZ, D.B.; PARRA-FORERO, D.M.; VARON-RAMÍREZ, V.M.; LESMES-SUÁREZ, J.C.; BARONA-RODRÍGUEZ, A.F.; ARIZA-NIETO, C.: “Espectroscopía visible y del infrarrojo cercano para el análisis de nutrientes en tejido vegetal de caña de azúcar para producción de panela”, Revista UDCA Actualidad & Divulgación Científica, 26(1), 2023, ISSN: 0123-4226.

CHE’YA, N.N.; MOHIDEM, N.A.; ROSLIN, N.A.; SABERIOON, M.; TARMIDI, M.Z.; ARIF SHAH, J.; FAZLIL ILAHI, W.F.; MAN, N.: “Mobile computing for pest and disease management using spectral signature analysis: A review”, Agronomy, 12(4): 967, 2022, ISSN: 2073-4395.

CISTERNAS, I.; VELÁSQUEZ, I.; CARO, A.; RODRÍGUEZ, A.: “Systematic literature review of implementations of precision agriculture”, Computers and Electronics in Agriculture, 176: 105626, 2020, ISSN: 0168-1699.

DE SOUZA, M.F.; DO AMARAL, L.R.; DE MEDEIROS OLIVEIRA, S.R.; COUTINHO, M.A.N.; NETTO, C.F.: “Spectral differentiation of sugarcane from weeds”, Biosystems Engineering, 190: 41-46, 2020, ISSN: 1537-5110.

DRUMETZ, L.; MEYER, T.R.; CHANUSSOT, J.; BERTOZZI, A.L.; JUTTEN, C.: “Hyperspectral image unmixing with endmember bundles and group sparsity inducing mixed norms”, IEEE Transactions on Image Processing, 28(7): 3435-3450, 2019, ISSN: 1057-7149.

ESPINOZA, F.; LUIS, F.: Caña de Azúcar-Manual Técnico, Ed. Instituto Paraguayo de Tecnología Agraria, Asunción, Paraguay, publisher: Caña de azúcar: Manual Técnico/Fernando Espinoza., 2020, ISBN: 99967-951-0-1.

FAOSTAT: Organización de las Naciones Unidas para la Alimentación y Agricultura, [en línea], Organización de las Naciones Unidas para la Alimentación y Agricultura, 2023, Disponible en: http://www.faostat.fao.org, [Consulta: 21 de abril de 2023].

FENG, M.C.; WANG, J.J.; WANG, C.; YANG, W.D.; WANG, H.Q.; XIAO, L.J.; SONG, Y.H.; GAO, L.M.; ZHANG, M.J.; DING, G.W.: “Response of winter wheat (Triticum aestivum L.) spectral reflectance characteristics to chlorophyll content in planting densities application rate”, Bulgarian Journal of Agricultural Science, 19: 1190-1197, 2013.

GAUSMAN, H.W.: “Leaf reflectance of near-infrared”, Photogrammetric Engineering, 40(2): 183-191, 1974.

HONG, D.; YOKOYA, N.; CHANUSSOT, J.; ZHU, X.X.: “An augmented linear mixing model to address spectral variability for hyperspectral unmixing”, IEEE Transactions on Image Processing, 28(4): 1923-1938, 2018, ISSN: 1057-7149.

JOHNSON, R.M.; VIATOR, R.P.; VEREMIS, J.C.; RICHARD, E.P.; ZIMBA, P.V.: “Discriminación de variedades de caña de azúcar con perfiles de pigmentos y datos de reflectancia foliar hiperespectral de alta resolución”, Journal Association Sugar Cane Technologists, 28: 63-75, 2008.

KAI, P.M.; DA COSTA, R.M.; DE OLIVEIRA, B.M.; FERNANDES, D.S.; FELIX, J.; SOARES, F.: “Discrimination of sugarcane varieties by remote sensing: A review of literature”, En: 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), Ed. IEEE, pp. 1212-1217, 2020, ISBN: 1-7281-7303-5.

KATSOULAS, N.; ELVANIDI, A.; FERENTINOS, K.P.; KACIRA, M.; BARTZANAS, T.; KITTAS, C.: “Crop reflectance monitoring as a tool for water stress detection in greenhouses: A review”, Biosystems Engineering, 151: 374-398, 2016, ISSN: 1537-5110.

KUIJPER, J.: “DeGroei van Bladschijf, Bladscheede em Stengel van het suikerriet”, Arch Suikerind Ned Indië, 23(1): 528-556, 1915.

KUMAR, C.; CHATTERJEE, S.; OOMMEN, T.; GUHA, A.: “New effective spectral matching measures for hyperspectral data analysis”, International Journal of Remote Sensing, 42(11): 4126-4156, 2021, ISSN: 0143-1161.

MOORE, P.H.; BOTHA, F.C.: Sugarcane: Physiology, Biochemistry, and Functional Biology, Inst. Wiley Blackwell Online Library, Nueva Delhi, India, publisher: Wiley Online Library, 2014.

NETO, A.S.; LOPES, D.; TOLEDO, J.; ZOLNIER, S.; SILVA, T. da: “Classification of sugarcane varieties using visible/near infrared spectral reflectance of stalks and multivariate methods”, The Journal of Agricultural Science, 156(4): 537-546, 2018, ISSN: 0021-8596.

PATHAK, P.; CHALOPIN, C.; ZICK, L.; KÖHLER, H.; PFAHL, A.; RAYES, N.; GOCKEL, I.; NEUMUTH, T.; MELZER, A.; JANSEN-WINKELN, B.: “Spectral similarity measures for in vivo human tissue discrimination based on hyperspectral imaging”, Diagnostics, 13(2): 195, 2023, ISSN: 2075-4418.

PEÑA, L.; RENTERÍA, V.; VELÁSQUEZ, C.; OJEDA, M.L.; BARRERA, E.: “Absorbancia y reflectancia de hojas de Ficus contaminadas con nanopartículas de plata”, Revista mexicana de física, 65(1): 95-105, 2019, ISSN: 0035-001X.

PEÑUELAS, J.; FILELLA, I.: “Visible and near-infrared reflectance techniques for diagnosing plant physiological status”, Trends in plant science, 3(4): 151-156, 1998, ISSN: 1360-1385.

PHUPHAPHUD, A.; SAENGPRACHATANARUG, K.; POSOM, J.; MARAPHUM, K.; TAIRA, E.: “Prediction of the fibre content of sugarcane stalk by direct scanning using visible-shortwave near infrared spectroscopy”, Vibrational spectroscopy, 101: 71-80, 2019, ISSN: 0924-2031.

RAMÍREZ-GONZÁLES, M.; RODRÍGUEZ-MOREIRA, D.; RAMÍREZ-GONZÁLES, F.; BARCIA-SARDIÑAS, S.: “Variables meteorológicas y desarrollo fenológico de la caña de azúcar en Aguada de Pasajeros”, Revista Cubana de Meteorología, 25: 354-366, 2019, ISSN: 2664-0880.

REYES, R.A.G.; GÓMEZ, J.A.V.; RUBIO, A.W.R.: “Sensoramiento remoto del rendimiento agrícola en caña de azúcar en Cacocum, Cuba”, Temas agrarios, 26(2): 152-159, 2021, ISSN: 0122-7610.

SARIĆ, R.; NGUYEN, V.D.; BURGE, T.; BERKOWITZ, O.; TRTÍLEK, M.; WHELAN, J.; LEWSEY, M.G.; ČUSTOVIĆ, E.: “Applications of hyperspectral imaging in plant phenotyping”, Trends in plant science, 27(3): 301-315, 2022, ISSN: 1360-1385.

SEGARRA, J.; BUCHAILLOT, M.L.; ARAUS, J.L.; KEFAUVER, S.C.: “Remote sensing for precision agriculture: Sentinel-2 improved features and applications”, Agronomy, 10(5): 641, 2020, ISSN: 2073-4395.

SINGH, V.; SHARMA, N.; SINGH, S.: “A review of imaging techniques for plant disease detection”, Artificial Intelligence in Agriculture, 4: 229-242, 2020, ISSN: 2589-7217.

SONOBE, R.; HIRONO, Y.: “Applying variable selection methods and preprocessing techniques to hyperspectral reflectance data to estimate tea cultivar chlorophyll content”, Remote Sensing, 15(1): 19, 2022, ISSN: 2072-4292.

THORP, K.; TIAN, L.: “A review on remote sensing of weeds in agriculture”, Precision Agriculture, 5(5): 477-508, 2004, ISSN: 1385-2256.

UDOMPETAIKUL, V.; PHETPAN, K.; SIRISOMBOON, P.: “Development of the partial least-squares model to determine the soluble solids content of sugarcane billets on an elevator conveyor”, Measurement, 167: 107898, 2021, ISSN: 0263-2241.

YUAN, L.; HUANG, Y.; LORAAMM, R.W.; NIE, C.; WANG, J.; ZHANG, J.: “Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects”, Field Crops Research, 156: 199-207, 2014, ISSN: 0378-4290.

Artigos Similares

Também poderá iniciar uma pesquisa avançada de similaridade para este artigo.

Artigos mais lidos do(s) mesmo(s) autor(es)