Prediction of compaction caused by the transit in sugarcane harvesting
Main Article Content
Resumo
Soil compaction due to agricultural machinery traffic is a threat to soil productivity and soil ecological functions. The prediction of soil stresses and compaction that soil bear during the harvest and transport are fundamental indications in the prevention strategies and remediation of the soil compaction. The objective of this research was to predict soil compaction caused by harvesters and transport equipment during sugarcane harvest on soft soil. Machinery traffic was simulated using the TASC V3.0 model, Module 1 "Stress Propagation and Soil Damage" was used. The machine system used for harvest sugarcane were formed by harvesters CASE IH 8800, and tipping tows 7CX (SC)-10 pulling by tractors YTO 1608 or XTZ 150K-09. Parameters from machinery and soil are introducing as data. The use of modelling TASC V3.0 permitted to predict soil compaction caused by harvesters and transport equipment during sugarcane harvest on soft soil. More severe soil compaction was obtained during use of tipping tow 7CX (SC)-10 due to high mean contact pressure and high tire load, which caused severe soil compaction until a depth of 0.37 m. Rear tire of tractor YTO 1604 caused severe soil compaction too reaching 0.31 m of depth. In general sense all equipment caused severe soil compaction in tillage layer, therefore must be make decompactions works with the objective to loose soil in depth for a good developed of sugarcane ratoons.
Article Details
Este trabalho encontra-se publicado com a Creative Commons Atribuição-NãoComercial 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
Referências
ALAKUKKU, L., WEISSKOPF, P., CHAMEN, W. C. T., TIJINK, F. G. J., VAN DER LINDEN, J. P., PIRES, S., SOMMER, C. & SPOOR, G. 2003. Prevention strategies for field traffic-induced subsoil compaction: a review Part 1. Machine/soil interacitions. Soil Till. Res., 73, 145-160.
ARVIDSSON, J. & KELLER, T. 2007. Soil stress as affected by wheel load and tyre inflation pressure. Soil Till. Res., 96, 284-291.
ASAE/ASABE S526.4(R2019) 2015. Soil and Water Terminology. St. Joseph, Michigan: ASABE.
BAI, Z. G., DENT, D. L., OLSSON, L. & SCHAEPMAN, M. E. 2008. Global assessment of land degradation and improvement 1: Identification by remote sensing. In: FAO/ISRIC (ed.). Rome/Wageningen. : FAO/ISRIC.
BATTIATO, A. & DISERENS, E. 2017. Tractor traction performance simulation on differently textured soils and validation: A basic study to make traction and energy requirements accessible to the practice. Soil and Tillage Research, 166, 18-32.
BERLI, M., CASINI, F., ATTINGER, W., SCHULIN, R., SPRINGMAN, S. M. & KIRBY, J. M. 2015. Compressibility of Undisturbed Silt Loam Soil—Measurements and Simulations. Vadose Zone J.
BIRIS, S. S., UNGUREANU, N. & CUJBESCU, D. 2019. Modelling of soil compaction under heavy-duty tractors. INMATEH - Agr. Eng., 57, 261-270.
BIRIS, S. S., VLADUT, V., UNGUREANU, N., PARASCHIV, G. & VOICU, G. 2009. Development and experimental testing of a FEM model for the stress distribution analysis in agricultural soil due to artificial compaction. Agric. Conspec. Sci., 74, 21-29.
BOTTA, G., JORAJURIA, D. & JORAJURIA, L. M. 2002. Influence of the axle load, tyre size and configuration on the compaction of a freshly tilled clayey soil. J. Terramech., 39, 47-54.
BOTTA, G. F., BECERRA, A. T. & TOURN, F. B. 2009. Effect of the number of tractor passes on soil rut depth and compaction in two tillage regimes. Soil Till. Res., 103, 381-386.
BOTTA, G. F., TOLÓN-BECERRA, A., RIVERO, D., LAUREDA, D., RAMÍREZ-ROMAN, M., LASTRA-BRAVO, X., AGNES, D., FLORES-PARRA, I. M., PELIZZARI, F. & MARTIREN, V. 2016. Compactión produced by combine harvest traffic: Effect on soil and soybean (Glycine max l.) yields under direct sowing in Argentinean Pampas. Eur. J. Agron., 74, 155-163.
CHAMEN, W. C. T., MOXEY, A. P., TOWERS, W., BALANA, B. & HALLETT, P. D. 2015. Mitigating arable soil compaction: A review and analysis of available cost and benefit data. Soil Till. Res., 146, 10-25.
DE LIMA, R. P., DA SILVA, A. P., GIAROLA, N. F. B., DA SILVA, A. R., ROLIM, M. M. & KELLER, T. 2018. Impact of initial bulk density and matric suction on compressive properties of two Oxisols under no-till. Soil and Tillage Research, 175, 168-177.
DÉFOSSSEZ, P. & RICHARD, G. 2002. Models of soil compaction due to traffic and their evaluation. Soil Till. Res., 67, 41-64.
DISERENS, E. 2009. Calculating the contact area of trailer tyres in the field. Soil & Tillage Research, 103, 302-309.
DISERENS, E., BATTIATO, A. & SARTORI, L. Soil Compaction, Soil Shearing and Fuel Consumption: TASC V3.0 – A Practical Tool for Decision-Making in Farming. International Conference of Agricultural Engineering, 6 - 10 July 2014 Zurich.
DISERENS, E., CHANET, M. & MARIONNEAU, A. Machine Weight and Soil Compaction: TASC V2.0.xls – a Practical Tool for Decision-Making in Farming. AgEng, 6 - 8 september 2010 Clermont-Ferrand. Ref 239.
DISERENS, E., DEFOSSEZ, P., DUBOISSET, A. & ALAOUI, A. 2011. Prediction of the contact area of agricultural traction tyres on firm soil. Bios. Eng., 110, 73-82.
GONZÁLEZ, O., IGLESIAS, C. E. & HERRERA, M. 2009. Análisis de los factores que provocan compactación del suelo agrícola. Rev. Cienci. Téc. Agrop., 18, 57-63.
GONZÁLEZ, O., IGLESIAS, C. E., HERRERA, M., LÓPEZ, E. & SÁNCHEZ, A. 2008. Efecto de la humedad y la presión sobre el suelo en la porosidad total de un Rhodic Ferralsol. Rev. Cienc. Téc. Agrop., 17, 50-54.
GONZÁLEZ, O., IGLESIAS, C. E., LÓPEZ, E., RECAREY, C. A. & HERRERA, M. 2016. Modelling in FEM the soil pressures distribution caused by a tyre on a Rhodic Ferralsol soil. J. of Terramech., 63, 61-67.
GONZÁLEZ, O., IGLESIAS, C. E., RECAREY, C. A., URRIOLAGOITIA-SOSA, G., URRIOLAGOITIA-CALDERÓN, G., HERNÁNDEZ, L. H. & HERRERA, M. 2013. Three dimensional finite element model of soil compaction caused by agricultural tire traffic. Comput. Electron. Agric., 99, 146-152.
GUIMARÃES JÚNNYOR, W. D. S., DISERENS, E., DE MARIA, I. C., ARAUJO-JUNIOR, C. F., FARHATE, C. V. V. & DE SOUZA, Z. M. 2019. Prediction of soil stresses and compaction due to agricultural machines in sugarcane cultivation systems with and without crop rotation. Sci. Total Environ., 681, 424-434.
GUIMARÃES, R. M. L., KELLER, T., MUNKHOLM, L. J. & LAMANDÉ, M. 2017. Visual soil evaluation and soil compaction research. Soil Till. Res., 173, 1-3.
HAKANSSON, I. & REEDER, R. C. 1994. Subsoil compaction by vehicles with high axle load extent, persistence and crop response Soil Till. Res, 29, 277-304.
HAMZA, M. A. & ANDERSON, W. K. 2005. Soil compaction in cropping systems. A review of the nature, causes and possible solutions. Soil Till. Res., 82, 121-145.
HERNÁNDEZ, A., PÉREZ, J. M., BOSCH, D. & CASTRO, N. 2015. Clasificación de los suelos de Cuba 2015, San José de las Lajas, Cuba, Ediciones INCA.
KELLER, T. 2005. A model for the prediction of the contact area and the distribution of vertical stress below agricultural tyres from readily available tyre parameters. Biosystems Engineering, 92, 85-96.
KELLER, T., DA SILVA, A. P., TORMENA, C. A., GIAROLA, N. F. B., CAVALIERI, K. M. V., STETTLER, M. & ARVIDSSON, J. 2015. SoilFlex-LLWR: linking a soil compaction model with the least limiting water range concept. Soil Use Manage, 31, 321–329.
KELLER, T., DÉFOSSEZ, P., WEISSKOPF, P., ARVIDSSON, J. & RICHARD, G. 2007. SoilFlex: A model for prediction of soil stresses and soil compaction due to agricultural field traffic including a synthesis of analytical approaches. Soil Till. Res., 93, 391-411.
KELLER, T. & LAMANDÉ, M. 2010. Challenges in the development of analytical soil compaction models. Soil Till. Res., 111, 54-64.
KUHWALD, M., DÖRNHÖFER, K., OPPELT, N. & DUTTMANN, R. 2018. Spatially Explicit Soil Compaction Risk Assessment of Arable Soils at Regional Scale: The SaSCiA-Model. Sustainability, 10.
LÓPEZ-BRAVO, E., SAUCEDO-LEVI, E. R., GONZÁLEZ-CUETO, O., HERRERA-SUÁREZ, M. & BETANCOURT-RODRÍGUEZ, Y. 2022. Effects of mechanized harvesting of sugarcane over the soil. Revista Ciencias Técnicas Agropecuarias, 31, 5-12.
MARTÍNEZ-RAMÍREZ, R., GONZÁLEZ-CUETO, O., BETANCOURT-RODRÍGUEZ, Y., RODRÍGUEZ-OROZCO, M. & GUILLÉN-SOSA, S. 2017. Soil compaction and variation of bank profile provoked by the harvester CASE IH A8800 on wet soils. Rev. Ing. Agr., 7, 30-35.
NAWAZ, M., BOURRIÉ, G. & TROLARD, F. 2013. Soil compaction impact and modelling. A review. Agron. Sustain. Dev., 33, 291-309.
ONEI 2023. Anuario Estadístico de Cuba 2022. Edición 2023, La Habana, Oficina Nacional de Estadísticas e Información.
SCHJØNNING, P., LAMANDÉ, M., TØGERSEN, F. A., ARVIDSSON, J. & KELLER, T. 2008. Modelling effects of tyre inflation pressure on the stress distribution near the soil–tyre interface. Biosyst. Eng., 99, 119-133.
SCHJØNNING, P., VAN DEN AKKER, J. J. H., KELLER, T., GREVE, M. H., LAMANDÉ, M., SIMOJOKI, A., STETTLER, M., ARVIDSSON, J. & BREUNING-MADSEN, H. 2015. Chapter Five - Driver-Pressure-State-Impact-Response (DPSIR) Analysis and Risk Assessment for Soil Compaction—A European Perspective. In: SPARKS, D. L. (ed.) Advances in Agronomy. Academic Press.
SILVA, R. P., ROLIM, M. M., GOMES, I. F., PEDROSA, E. M. R., TAVARES, U. E. & SANTOS, A. N. 2018. Numerical modeling of soil compaction in a sugarcane crop using the finite element method. Soil Till. Res., 181, 1-10.
STETTLER, M., KELLER, T., WEISSKOPF, P., LAMANDÉ, M., LASSEN, P. & SCHJØNNING, P. 2014. Terranimo – a web-based tool for evaluating soil compaction. Landtechnik, 69, 132-137.
STOESSEL, F., SONDEREGGER, T., BAYER, P. & HELLWEG, S. 2018. Assessing the environmental impacts of soil compaction in Life Cycle Assessment. Sci. Total Environ., 630, 913-921.
VAN DEN AKKER, J. J. H. 2004. SOCOMO: a soil compaction model to calculate soil stresses and the subsoil carrying capacity. Soil Till. Res., 79, 113-127.