Computational Model to Predict Soil Density Using Machine Learning Methods
Main Article Content
Abstract
Article Details
Those authors that have publications with this journal accept the following terms:
1. They will retain their copyright and guarantee the journal the right of first publication of their work, which will be simultaneously subject to the License Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows third parties to share the work whenever its author is indicated and its first publication this journal. Under this license the author will be free of:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
• NonCommercial — You may not use the material for commercial purposes.
• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
2. The authors may adopt other non-exclusive license agreements to distribute the published version of the work (e.g., deposit it in an institutional telematics file or publish it in a monographic volume) whenever the initial publication is indicated in this journal.
3. The authors are allowed and recommended disseminating their work through the Internet (e.g. in institutional telematics archives or on their website) before and during the submission process, which can produce interesting exchanges and increase the citations of the published work. (See the Effect of open access).
References
ADAMCHUK, V.I.; HEMMAT, A.; MOUAZEN, A.M.: “Soil Compaction Sensor Systems - Current Developments”, [en línea], En: ASAE Annual Meeting, Ed. American Society of Agricultural and Biological Engineers (ASABE), Providence, Rhode Island, p. 10, 2008, DOI: 10.13031/2013.24814, Disponible en: http://elibrary.asabe.org/abstract.asp?JID=5&AID=24814&CID=prov2008&T=1, [Consulta: 30 de enero de 2017].
ANDRADE, P.; ROSA, U.; UPADHYAYA, S.; JENKINS, B.; AGUERA, J.; JOSIAH, M.: “Soil profile force measurements using an instrumented tine”, [en línea], En: ASAE Annual Meeting, Ed. American Society of Agricultural and Biological Engineers (ASABE), St. Joseph, Michigan, p. 11, 2001, DOI: 10.13031/2013.15697, Disponible en: http://elibrary.asabe.org/abstract.asp?JID=5&AID=15697&CID=sca2001&T=1, [Consulta: 30 de enero de 2017].
ARAÚZO, A.: Un sistema inteligente para selección de características en clasificación, Universidad de Granada, Tesis de Doctorado, España, 238 p., 2006.
BELLO, M.: Un método de aproximación de funciones basado en el enfoque de los prototipos más cercanos utilizando relaciones de similaridad, Universidad Central “Marta Abreu” de Las Villas, Tesis de Grado, Santa Clara, Cuba, 94 p., 2012.
BURR, D.J.: “Experiments on neural net recognition of spoken and written text”, IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(7): 1162-1168, 1988, ISSN: 0096-3518, DOI: 10.1109/29.1643, Disponible en: http://ieeexplore.ieee.org/document/1643/, [Consulta: 30 de enero de 2017].
CARPENTER, G.A.: “Neural network models for pattern recognition and associative memory”, Neural Networks, 2(4): 243-257, 1989, ISSN: 0893-6080, DOI: 10.1016/0893-6080(89)90035-X, Disponible en: http://www.sciencedirect.com/science/article/pii/089360808990035X, [Consulta: 30 de enero de 2017].
GILL, W.R.; VANDEN BERG, G.E.: Soil dynamics in tillage and traction, Ed. United States Department of Agriculture, Washington, D.C., 511 p., 1968.
HALL, H.E.; RAPER, R.L.: “Development and concept evaluation of an on-the-go soil strength measurement system”, Transactions of the ASAE, 48(2): 469-477, 2005, ISSN: 2151-0059, DOI: 10.13031/2013.18311, Disponible en: http://elibrary.asabe.org/abstract.asp??JID=3&AID=18311&CID=t2005&v=48&i=2&T=1, [Consulta: 30 de enero de 2017].
HERRERA, S.M.; IGLESIAS, C.C.; LARA, C.D.; GONZÁLEZ, C.O.; LÓPEZ, B.E.: “Desarrollo de un sensor para la medición continúa de la compactación del suelo”, Revista Ciencias Técnicas Agropecuarias, 20(1): 06-11, 2011, ISSN: 2071-0054, Disponible en: http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S2071-00542011000100001&lng=es&nrm=iso&tlng=es, [Consulta: 30 de enero de 2017].
MOUAZEN, A.M.; RAMON, H.: “Development of on-line measurement system of bulk density based on on-line measured draught, depth and soil moisture content”, Soil and Tillage Research, 86(2): 218-229, 2006, ISSN: 0167-1987, DOI: 10.1016/j.still.2005.02.026, Disponible en: http://www.sciencedirect.com/science/article/pii/S0167198705000711, [Consulta: 30 de enero de 2017].
MOUAZEN, A.M.; RAMON, H.; BAERDEMAEKER, J.D.: “Modelling Compaction from On-line Measurement of Soil Properties and Sensor Draught”, Precision Agriculture, 4(2): 203-212, 2003, ISSN: 1385-2256, 1573-1618, DOI: 10.1023/A:1024513523618, Disponible en: https://link.springer.com/article/10.1023/A:1024513523618, [Consulta: 30 de enero de 2017].
NADERI-BOLDAJI, M.; SHARIFI, A.; ALIMARDANI, R.; HEMMAT, A.; KEYHANI, A.; LOONSTRA, E.H.; WEISSKOPF, P.; STETTLER, M.; KELLER, T.: “Use of a triple-sensor fusion system for on-the-go measurement of soil compaction”, Soil and Tillage Research, 128: 44-53, 2013, ISSN: 0167-1987, DOI: 10.1016/j.still.2012.10.002, Disponible en: http://www.sciencedirect.com/science/article/pii/S016719871200222X, [Consulta: 30 de enero de 2017].
QURAISHI, M.Z.; MOUAZEN, A.M.: “Calibration of an on-line sensor for measurement of topsoil bulk density in all soil textures”, Soil and Tillage Research, 126: 219-228, 2013, ISSN: 0167-1987, DOI: 10.1016/j.still.2012.08.005, Disponible en: http://www.sciencedirect.com/science/article/pii/S0167198712001821, [Consulta: 30 de enero de 2017].
RPACAPV: “Compactación del suelo”, [en línea], 26 de mayo de 2008, Disponible en: http://www.euskadi.net/r33-2288/es/contenidos/informacion/suelo/es_1044/compactacion.html, [Consulta: 14 de octubre de 2017].
RYNKIEWICZ, J.: “General bound of overfitting for MLP regression models”, Neurocomputing, ser. Advances in artificial neural networks, machine learning, and computational intelligence (ESANN 2011), 90: 106-110, 2012, ISSN: 0925-2312, DOI: 10.1016/j.neucom.2011.11.028, Disponible en: http://www.sciencedirect.com/science/article/pii/S0925231212001865, [Consulta: 30 de enero de 2017].
SOANE, B.D.; VAN OUWERKERK, C.: Soil Compaction in Crop Production, [en línea], Ed. Elsevier, 695 p., Google-Books-ID: DP3KBAAAQBAJ, 1994, ISBN: 978-0-08-093400-6, Disponible en: https://books.google.com.cu/books?id=DP3KBAAAQBAJ, [Consulta: 30 de enero de 2017].
WITTEN, I.H.; FRANK, E.: Data Mining: Practical Machine Learning Tools and Techniques, [en línea], Ed. Morgan Kaufmann, 2.a ed., Amsterdam - Boston, MA, 560 p., 2005, ISBN: 978-0-12-088407-0, Disponible en: https://www.amazon.es/Data-Mining-Practical-Techniques-Management/dp/0120884070, [Consulta: 30 de enero de 2017].