Computational Model to Predict Soil Density Using Machine Learning Methods

Main Article Content

Darina Lara Coba
Miguel Herrera Suárez
María Matilde García Lorenzo
Roberto Beltran

Abstract

The machine learning methods have been used successfully in the calculation of parameters of various problems of engineering, in which the complicated variables have a relation nonlinear among themselves and the modelation does not enable representing the intervening problem through a mathematical function of easy deduction. For the estimation of soil properties several variables are analyzed that make their estimation by means of mathematical models is a complex process transferring the problem solution to artificial intelligence field. The present work aims at developing a mathematical model for the estimation of soil density through the on-the-go soil sensing, a method of automatized learning. The computational learning automated tool used was WEKA, by means of which three procedures of automatized learning applied (multilayer perceptron neuronal artificial nets and K-nearest neighbor). The validation of the model came true by means of the crossed and experimental validation. Results evidence that the best method is the K-nearest neighbor with absolute mean error of 0.06 and a correlation coefficient of 0.89; variables of bigger weight in prediction were moisture content followed by work speed, power, width of the working tool and the depth.

Article Details

How to Cite
Lara Coba, D., Herrera Suárez, M., García Lorenzo, M. M., & Beltran, R. (2018). Computational Model to Predict Soil Density Using Machine Learning Methods. Revista Ciencias Técnicas Agropecuarias, 27(1), 46–53. Retrieved from https://revistas.unah.edu.cu/index.php/rcta/article/view/859
Section
Original Articles
Author Biographies

Darina Lara Coba, Universidad Tecnológica de la Habana José Antonio Echeverría

Dra.C., Prof. Auxiliar, Facultad de Ingeniería Mecánica, Departamento de Mecánica Aplicada

Miguel Herrera Suárez, Universidad Técnica de Manabí (UTM), Facultad de Ciencias Matemáticas Físicas y Químicas, Escuela de Mecánica

Dr.C

María Matilde García Lorenzo, Universidad Central “Marta Abreu” de Las Villas, Grupo de Inteligencia Artificial, Centro de Investigaciones Informáticas

Dra.C.

Roberto Beltran, Universidad de las Fuerzas Armadas, Dpto. Energía y Mecánica

M.Sc.

References

ADAMCHUK, V.I.; HEMMAT, A.; MOUAZEN, A.M.: “Soil Compaction Sensor Systems - Current Developments”, [en línea], En: ASAE Annual Meeting, Ed. American Society of Agricultural and Biological Engineers (ASABE), Providence, Rhode Island, p. 10, 2008, DOI: 10.13031/2013.24814, Disponible en: http://elibrary.asabe.org/abstract.asp?JID=5&AID=24814&CID=prov2008&T=1, [Consulta: 30 de enero de 2017].

ANDRADE, P.; ROSA, U.; UPADHYAYA, S.; JENKINS, B.; AGUERA, J.; JOSIAH, M.: “Soil profile force measurements using an instrumented tine”, [en línea], En: ASAE Annual Meeting, Ed. American Society of Agricultural and Biological Engineers (ASABE), St. Joseph, Michigan, p. 11, 2001, DOI: 10.13031/2013.15697, Disponible en: http://elibrary.asabe.org/abstract.asp?JID=5&AID=15697&CID=sca2001&T=1, [Consulta: 30 de enero de 2017].

ARAÚZO, A.: Un sistema inteligente para selección de características en clasificación, Universidad de Granada, Tesis de Doctorado, España, 238 p., 2006.

BELLO, M.: Un método de aproximación de funciones basado en el enfoque de los prototipos más cercanos utilizando relaciones de similaridad, Universidad Central “Marta Abreu” de Las Villas, Tesis de Grado, Santa Clara, Cuba, 94 p., 2012.

BURR, D.J.: “Experiments on neural net recognition of spoken and written text”, IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(7): 1162-1168, 1988, ISSN: 0096-3518, DOI: 10.1109/29.1643, Disponible en: http://ieeexplore.ieee.org/document/1643/, [Consulta: 30 de enero de 2017].

CARPENTER, G.A.: “Neural network models for pattern recognition and associative memory”, Neural Networks, 2(4): 243-257, 1989, ISSN: 0893-6080, DOI: 10.1016/0893-6080(89)90035-X, Disponible en: http://www.sciencedirect.com/science/article/pii/089360808990035X, [Consulta: 30 de enero de 2017].

GILL, W.R.; VANDEN BERG, G.E.: Soil dynamics in tillage and traction, Ed. United States Department of Agriculture, Washington, D.C., 511 p., 1968.

HALL, H.E.; RAPER, R.L.: “Development and concept evaluation of an on-the-go soil strength measurement system”, Transactions of the ASAE, 48(2): 469-477, 2005, ISSN: 2151-0059, DOI: 10.13031/2013.18311, Disponible en: http://elibrary.asabe.org/abstract.asp??JID=3&AID=18311&CID=t2005&v=48&i=2&T=1, [Consulta: 30 de enero de 2017].

HERRERA, S.M.; IGLESIAS, C.C.; LARA, C.D.; GONZÁLEZ, C.O.; LÓPEZ, B.E.: “Desarrollo de un sensor para la medición continúa de la compactación del suelo”, Revista Ciencias Técnicas Agropecuarias, 20(1): 06-11, 2011, ISSN: 2071-0054, Disponible en: http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S2071-00542011000100001&lng=es&nrm=iso&tlng=es, [Consulta: 30 de enero de 2017].

MOUAZEN, A.M.; RAMON, H.: “Development of on-line measurement system of bulk density based on on-line measured draught, depth and soil moisture content”, Soil and Tillage Research, 86(2): 218-229, 2006, ISSN: 0167-1987, DOI: 10.1016/j.still.2005.02.026, Disponible en: http://www.sciencedirect.com/science/article/pii/S0167198705000711, [Consulta: 30 de enero de 2017].

MOUAZEN, A.M.; RAMON, H.; BAERDEMAEKER, J.D.: “Modelling Compaction from On-line Measurement of Soil Properties and Sensor Draught”, Precision Agriculture, 4(2): 203-212, 2003, ISSN: 1385-2256, 1573-1618, DOI: 10.1023/A:1024513523618, Disponible en: https://link.springer.com/article/10.1023/A:1024513523618, [Consulta: 30 de enero de 2017].

NADERI-BOLDAJI, M.; SHARIFI, A.; ALIMARDANI, R.; HEMMAT, A.; KEYHANI, A.; LOONSTRA, E.H.; WEISSKOPF, P.; STETTLER, M.; KELLER, T.: “Use of a triple-sensor fusion system for on-the-go measurement of soil compaction”, Soil and Tillage Research, 128: 44-53, 2013, ISSN: 0167-1987, DOI: 10.1016/j.still.2012.10.002, Disponible en: http://www.sciencedirect.com/science/article/pii/S016719871200222X, [Consulta: 30 de enero de 2017].

QURAISHI, M.Z.; MOUAZEN, A.M.: “Calibration of an on-line sensor for measurement of topsoil bulk density in all soil textures”, Soil and Tillage Research, 126: 219-228, 2013, ISSN: 0167-1987, DOI: 10.1016/j.still.2012.08.005, Disponible en: http://www.sciencedirect.com/science/article/pii/S0167198712001821, [Consulta: 30 de enero de 2017].

RPACAPV: “Compactación del suelo”, [en línea], 26 de mayo de 2008, Disponible en: http://www.euskadi.net/r33-2288/es/contenidos/informacion/suelo/es_1044/compactacion.html, [Consulta: 14 de octubre de 2017].

RYNKIEWICZ, J.: “General bound of overfitting for MLP regression models”, Neurocomputing, ser. Advances in artificial neural networks, machine learning, and computational intelligence (ESANN 2011), 90: 106-110, 2012, ISSN: 0925-2312, DOI: 10.1016/j.neucom.2011.11.028, Disponible en: http://www.sciencedirect.com/science/article/pii/S0925231212001865, [Consulta: 30 de enero de 2017].

SOANE, B.D.; VAN OUWERKERK, C.: Soil Compaction in Crop Production, [en línea], Ed. Elsevier, 695 p., Google-Books-ID: DP3KBAAAQBAJ, 1994, ISBN: 978-0-08-093400-6, Disponible en: https://books.google.com.cu/books?id=DP3KBAAAQBAJ, [Consulta: 30 de enero de 2017].

WITTEN, I.H.; FRANK, E.: Data Mining: Practical Machine Learning Tools and Techniques, [en línea], Ed. Morgan Kaufmann, 2.a ed., Amsterdam - Boston, MA, 560 p., 2005, ISBN: 978-0-12-088407-0, Disponible en: https://www.amazon.es/Data-Mining-Practical-Techniques-Management/dp/0120884070, [Consulta: 30 de enero de 2017].

Most read articles by the same author(s)

1 2 > >>