Adjustment of the plastic parameters of the Extended Drucker Prager model for the simulation of the mechanical response of a clayey soil (Vertisol)

Main Article Content

Alain Ariel de la Rosa Andino
Patricio Rubén Alcocer Quinteros
Omar González Cueto
Alberto Masaguer Rodríguez
Miguel Herrera Suárez

Abstract

This research work was carried out with the aim of adjusting the constitutive parameters of the Extended Drucker-Prager (EDP) model which defines the phase of plastic deformation of soil in the simulation of the mechanical response of clayey soil (Vertisol). The stress-strain curve is divided into two parts and two equations describing its path were obtained. Initial data were consistent with the experimentally determined data. Starting from these results, the approximate values of both the internal friction angle of the fault plane of the Extended Drucker-Prager model, as well as the angle of dilatancy were searched out. Finally the optimum values of these angles were estimated, reducing errors in the predictions of the EDP model below 4.35% and turning this model adequate for simulating the mechanical response of the soil object of investigation.

Article Details

How to Cite
de la Rosa Andino, A. A., Alcocer Quinteros, P. R., González Cueto, O., Masaguer Rodríguez, A., & Herrera Suárez, M. (2016). Adjustment of the plastic parameters of the Extended Drucker Prager model for the simulation of the mechanical response of a clayey soil (Vertisol). Revista Ciencias Técnicas Agropecuarias, 25(3), 4–12. Retrieved from https://revistas.unah.edu.cu/index.php/rcta/article/view/448
Section
Original Articles
Author Biographies

Alain Ariel de la Rosa Andino, Universidad de Granma

Dr.C, Prof. Auxiliar, Universidad de Granma. Dpto. de Ciencias Técnicas, Bayamo

Patricio Rubén Alcocer Quinteros, Universidad Técnica de Quevedo

M.Sc., Universidad Técnica de Quevedo, Facultad de Ciencias de la Ingeniería, Quevedo

Omar González Cueto, Universidad Central de Las Villas

Dr.C., Universidad Central de Las Villas. Dpto. Mecanización Agropecuaria, Santa Clara, Villa Clara

Alberto Masaguer Rodríguez, Universidad Politécnica de Madrid

Dr.C., Universidad Politécnica de Madrid, Escuela Técnica de Ingenieros Agrónomos, Departamento de Producción Agraria

Miguel Herrera Suárez, Universidad Técnica de Manabí

Dr.C., Universidad Técnica de Manabí, Departamento de Ingeniería Agrícola, Portoviejo, Manabí

References

DAVOUDI, S.; ALIMARDANI, R.; KEYHANI, A.; ATARNEJAD, R.: “A two dimensional finite element analysis of a plane tillage tool in soil using a non-linear elasto-

plastic model”, American-Eurasian Journal of Agricultural & Environmental Sciences, 3(3): 498–505, 2008, ISSN: 1818-6769, 1990-4053.

DE LA ROSA, A.A.A.; HERRERA, S.M.; GONZÁLEZ, C.O.: “Propiedades macroestructurales de un Vertisuelo requeridas para la simulación computacional de la interacción

suelo-apero de labranza mediante el Método de Elementos Finitos (MEF)”, Revista Ciencias Técnicas Agropecuarias, ISSN: 2071-0054, 20(2): 56-59, 2011.

DE LA ROSA, A.A.A.; HERRERA, S.M.; GONZÁLEZ, C.O.; BENÍTEZ, L.L.V.; CALZADA, P.I.; GARCÍA, P.L.: “Evaluación de la validez del modelo constitutivo

Drucker Prager Extendido para la simulación de la respuesta mecánica de un Vertisol de la región central de Cuba”, Revista Ciencias Técnicas Agropecuarias, ISSN:

-0054, 22(1): 27-35, marzo de 2013,

DE LA ROSA, A.A.; HERRERA, S.C.: “Influencia del estado de humedad y densificación en las propiedades macroestructurales de un Vertisol en tres niveles de profundidad”,

Revista de la Facultad de Agronomía, ISSN: 0378-7818, 30(1): 33-52, 2013.

EGIL, F.R.; RISNES, R.: “Application of Three Dimensional Failure Criteria on High-Porosity Chalk”, [en línea], En: Proceedings of the 6th Nordic Symposium on

Petrophysics, Ed. Nordic Energy Research Programme-Norwegian U. of Science and Technology, Trondheim, Norway, pp. 15–16, 2001, Disponible en: http://www.

ipt.ntnu.no/nordic/Papers/6th_Nordic_Flatebo.pdf, [Consulta: 23 de mayo de 2016].

GONZÁLEZ, C.O.; HERRERA, S.M.; IGLESIAS, C.C.E.; DIEGO, N.F.; URRIOLAGOITIA, S.G.; HERNÁNDEZ, G.L.H.: “Modelo en elementos finitos de la interacción

neumático-suelo”, Revista Mexicana de Ciencias Agrícolas, (4): 664-671, 2012, ISSN: 2007-9230.

GONZÁLEZ, C.O.; IGLESIAS, C.C.E.; RECAREY, M.C.A.; URRIOLAGOITIA, S.G.; HERNÁNDEZ, G.L.H.; URRIOLAGOITIA, C.G.; HERRERA, S.M.: “Three

dimensional finite element model of soil compaction caused by agricultural tire traffic”, Computers and Electronics in Agriculture, 99: 146-152, noviembre de 2013,

ISSN: 0168-1699, DOI: 10.1016/j.compag.2013.08.026..

GRUJICIC, M.; HE, T.; PANDURANGAN, B.; BELL, W.C.; CHEESEMAN, B.A.; ROY, W.N.; SKAGGS, R.R.: “Development, parameterization, and validation of a

visco-plastic material model for sand with different levels of water saturation”, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials

Design and Applications, 223(2): 63-81, 1 de abril de 2009, ISSN: 1464-4207, 2041-3076, DOI: 10.1243/14644207JMDA237.

HELWANY, S.: Applied Soil Mechanics with ABAQUS Applications, Ed. John Wiley & Sons, 402 p., 16 de marzo de 2007, ISBN: 978-0-471-79107-2.

HERRERA, S.M.; GONZÁLEZ, C.O.; NAVA, F.D.; RUIZ, V.J.; LÓPEZ, B.E.; IGLESIAS, C.C.E.: “Simulation of the soil mechanical behavior in the soil tillage tool

interface”, Revista Facultad de Ingeniería Universidad de Antioquia, (69): 77-88, diciembre de 2013, ISSN: 0120-6230.

HERRERA, S.M.; IGLESIAS, C.C.E.; GONZÁLEZ, C.O.; LÓPEZ, B.E.; SÁNCHEZ, I.Á.: “Simulación mediante el Método de Elementos Finitos de la respuesta mecánica

de un Oxisol”, Revista Ciencias Técnicas Agropecuarias, 17(2): 55–61, 2008, ISSN: 1010-2760, 2071-0054.

IBRAHMI, A.; BENTAHER, H.; MAALEJ, A.: “Soil-blade orientation effect on tillage forces determined by 3D finite element models”, Spanish Journal of Agricultural

Research, 12(4): 941-951, 10 de octubre de 2014, ISSN: 2171-9292, DOI: 10.5424/sjar/2014124-5766.

JAFARI, R.; TAVAKOLI, T.; MINAEE, S.; RAOUFAT, M.H.: “Large deformation modeling in soil-tillage tool interaction using advanced 3D nonlinear finite element

approach”, [en línea], En: Madureira, A.M. (ed.), 6th WSEAS International Conference on Simulation, Modelling and Optimization, Ed. World Scientific and

Engineering Academy and Society, Lisbon, Portugal, p. 6, OCLC: 255720013, 2006, ISBN: 960-8457-53-X, Disponible en: http://www.wseas.us/e-library/conferences/

lisbon/smo/index.htm, [Consulta: 1 de junio de 2016].

LEVENBERG, K.: “A method for the solution of certain non-linear problems in least squares”, Quarterly of Applied Mathematics, 2(2): 164-168, 1944, ISSN: 0033-569X.

MARQUARDT, D.W.: “An Algorithm for Least-Squares Estimation of Nonlinear Parameters”, Journal of the Society for Industrial and Applied Mathematics, 11(2): 431-

, junio de 1963, ISSN: 0368-4245, 2168-3484, DOI: 10.1137/0111030.

MORÉ, J.J.: “The Levenberg-Marquardt algorithm: Implementation and theory”, [en línea], En: Watson, G.A. (ed.), Numerical Analysis, ser. Lecture Notes in Mathematics,

no. ser. 630, Ed. Springer Berlin Heidelberg, pp. 105-116, DOI: 10.1007/BFb0067700, 1978, ISBN: 978-3-540-08538-6, Disponible en: http://link.springer.com/

chapter/10.1007/BFb0067700, [Consulta: 23 de mayo de 2016].

MOSLEM, N.; HOSSEIN, G.: “Numerical simulation of tire/soil interaction using a verified 3D finite element model”, Journal of Central South University, 21(2): 817-821,

de febrero de 2014, ISSN: 2095-2899, 2227-5223, DOI: 10.1007/s11771-014-2005-5.

OTARAWANNA, S.; MANONUKUL, A.; CARMAI, J.: “Modelling of metal powder compaction using the modified Drucker-Prager cap model”, [en línea], En: Proceedings

of the 18 Mechanical Engineering Network of Thailand Conference, Ed. Department of Mechanical Engineer Prince of Songkla University, Thailand, pp.

–321, 2004, Disponible en: http://tsme.org/ME_NETT/ME_NETT18/fullpaper/amm/AMM52.pdf, [Consulta: 23 de mayo de 2016].

PTC: Mathcad, [en línea], (Versión 14.0), [Windows], Ed. Parametric Technology Corporation (PTC), United State of America, 2007, Disponible en: http://support.ptc.

com/support/mathcad_downloads.htm.

SIMULIA: Abaqus Analysis User’s Manual. Version 6.8, [en línea], Ed. Dassault Systèmes Simulia Corp., vol. III, Providence, RI, USA, 647 p., 2008a, Disponible en:

http://www.pdfdrive.net/abaqus-analysis-users-manual-vol3-e6117226.html, [Consulta: 7 de julio de 2016].

SIMULIA: Abaqus Theory Manual. Version 6.8, [en línea], Ed. Dassault Systèmes Simulia Corp., Providence, RI, USA, 1176 p., 2008b, Disponible en: http://130.149.89.49:2080/

v6.8/books/hhp/default.htm?startat=pt02ch03.html, [Consulta: 7 de julio de 2016].

TRUONG-LOÏ, M.L.; SAATCHI, S.; JARUWATANADILOK, S.: “Soil Moisture Estimation Under Tropical Forests Using UHF Radar Polarimetry”, IEEE Transactions

on Geoscience and Remote Sensing, 53(4): 1718-1727, abril de 2015, ISSN: 0196-2892, DOI: 10.1109/TGRS.2014.2346656.

XIA, K.: “Finite element modeling of tire/terrain interaction: Application to predicting soil compaction and tire mobility”, Journal of Terramechanics, ISSN:0022-4898,

DOI: http://dx.doi.org/10.1016/j.jterra.2010.05.001, 48(2): 113-123, 2011.

XIANG-R. Z.; JIN-C. W.: “Introduction to partly soil models in ABAQUS Software and their application to the geotechnical engineering”, Rock and Soil Mechanics,

DOI: 25(2): 145-148, 2004.

YIN, L.; S. KAU y L. JIE: “Aplication of Mohr-Coulomb equivalent area yield criterion to slope stability analusis”, Journal of Geodesy and Geodynamics, ISSN:1671-

, 29(1): 135-139, 2009.

YU, L.; J. LIU; X. J. KONG y Y. HU: “Three-dimensional RITSS large displacement finite element method for penetration of foundations into soil”, Computers and

Geotechnics, ISSN:0266-352X, DOI: http://dx.doi.org/10.1016/j.compgeo.2007.08.007, 35(3): 372-382, 2008.