Modelación de perfil de humedad de suelos empleando un filtro de Kalman de Monte-Carlo
Main Article Content
Abstract
Article Details
Those authors that have publications with this journal accept the following terms:
1. They will retain their copyright and guarantee the journal the right of first publication of their work, which will be simultaneously subject to the License Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows third parties to share the work whenever its author is indicated and its first publication this journal. Under this license the author will be free of:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
• NonCommercial — You may not use the material for commercial purposes.
• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
2. The authors may adopt other non-exclusive license agreements to distribute the published version of the work (e.g., deposit it in an institutional telematics file or publish it in a monographic volume) whenever the initial publication is indicated in this journal.
3. The authors are allowed and recommended disseminating their work through the Internet (e.g. in institutional telematics archives or on their website) before and during the submission process, which can produce interesting exchanges and increase the citations of the published work. (See the Effect of open access).
References
CAMPORESE, M., PANICONI, C., PUTTI, M. AND SALANDIN, P.: “Ensemble Kalman filter data assimilation for a process based catch-
ment scale model of surface and subsurface flow”, Water Resour. Res., ISSN: 0 0 43 -139 7, doi:10.1029/ 20 08WR0 07031, 45, W10421, 2009.
CROW, W. & WOOD, E.: “The assimilation of remotely sensed soil bright ness temperat ure imager y into a land surface model using ensemble Kalman filtering: a case st udy based on ESTAR measurements during SGP97, Adv”, Water Resour., ISSN: 0097-8078, 26:137– 49, 2003.
CHIRICO, G.B., MEDI NA, H., & ROMANO, N.: “Kalman filters for assimilating near-surface obser vations in the Richards equation. I: Retrieving state profiles with linear and nonlinear numerical schemes”, Hydrol. and Earth Sys. Sci., ISSN: 1027-5606, Aceptada (2013 - 474), 2013.
ENTEKHABI, D., NAKAMURA, H., & NJOKU, E. G.: “Solving the inverse problem for soil moist ure and temperat ure profiles by sequential
assimilation of multifrequency remote sensed obser vations”, IEEE Trans. Geosci. Remote Sensing, ISSN: 0196 -2892 , 32 (2) , 438 - 4 4 8 , 1994.
ENTEKHABI, D., RODRÍGUEZ-ITURBE, I., & CASTELLI, F: “Mut ual interaction of soil moist ure state and atmospheric processes”, J.
Hydrol., ISSN: 0022-1694, 184, 3-17, 1996.
EVENSEN, G.: “Sequential data assimilation with a nonlinear quasi-geost ro p h i c m o d e l u s i n g Mo nt e C a r l o m e t h o d s t o f o r e c a s t e r r o r s t a t i s t i c s ”, J. Geophys. Res., ISSN: 014 8 - 0 227, 99, 10143–62, 1994.
EVENSEN, G.: “The ensemble Kalman filter: Theoretical for mulation and practical implementation”, Ocean Dyn., ISSN: 1616 -7341, 53,
–367, 2003.
JULIER, S. J., UHLMANN, J. K., & DURRANT-WHYTE, H. F.: “A new method for the nonlinear t ransfor mation of means and covariances
in filters and estimators”, IEEE Trans. Automat. Control, ISSN: 0 018 - 9286 , 45: 477–482, 2000.
JULIER, S., J. & UHLMANN, J. K.: “Unscented filtering and nonlinear estimation”, Proceedings of the IEEE, http://dx.doi.org/10.1109/
JPROC.2003.823141, 92 (3), 401–422, 2004.
JURY, W. A., GARDNER, W. R., AND GARDNER, W. H.: Soil Physics, 5t h e d . , J oh n Wi l e y, Ne w Yo r k , I SBN, 0 4 -7183 -10 8 -5, N Y, USA, 1991.
KALMAN, R. E.: “A New Approach to Linear Filtering and Prediction Problems”, ASME J. Basic Eng., ISSN: 82D: 35- 45, 1960.
LI U, Y. & GUPTA H. V.: “ Unc e r t a i nt y i n hyd r ol og i c model i ng: Towa r d a n i nt eg r at e d d at a a s si mi l at i on f r a mewor k ”, Water Resour. Res., ISSN: 0043 -1397, 43, W07401, doi: 10.1029/2006WR005756, 2007.
MCLAUGHLI N, D. B.: “An integrated approach to hydrologic data assimilation: Inter polation, smoothing, and filtering Adv.”, Water Resour.,
ISSN: 0097-8078, 25, 1275–1286, 2002.
MILLY, P. C. & DUNNE, K. A.: “Sensitivit y of the global water cycle to the water-holding capacit y of land”, J. Clim., ISSN: 0894-8755, 7
(4), 506-526, 1994.
REICHLE, R. H. AND KOSTER, R. D.: “Assessing the impact of horizontal error correlations in background fields on soil moisture estima-
t i on”, Journal of Hydrometeorology, ISSN: 1525 -755X, 4 (6), 1229– 1242, 2003.
REICHLE, R. H.: “Data assimilation methods in the Ear th sciences”, Advances in Water Resources, ISSN: 03 0 9 -170 8 , 31, 1411–1418, 2008.
RODRIGUEZ-ITURBE, I. & PORPORATO, A.: Ecohydrology of Water-Controlled Ecosystems: Soil Moisture and Plant Dynamics, ISBN
-2181-943-1, Cambridge Universit y Press, USA, 2005.
VAN DAM, J.C.: Field- scale water flow and solute transport , SWAP model concept s, parameter estimation and case studies, Doctoral Thesis Wageningen University. ISBN 90-5808-256-3, Holland, 2000.
V ER EECK E N, H . , H U I SMA N, J . A . , B OGE NA, H . , VA N DER BORGHT, J . , V RUGT, J . A . , & HOPMA NS , J . W. : “ On t h e v a l u e of s oi l m oi s t u r e measurements in vadose zone hydrology: A review,” Water Resour. Res., ISSN: 0 0 43 -139 7, doi: 10.1029/2008WR006829, 44: W00D06, 2008.
WALKER, J. P., WILLGOOSE G. R., AND KALMA, J. D.: “One-dimensional soil moist ure profile ret rieval by assimilation of near-surface
obser vations: a comparison of ret rieval algorithms”, Adv. Water Resour., ISSN: 0097-8078, 24, 631-650, 2001.