Analysis of constitutive models used to simulate soil compaction by mean of finite elements method
Main Article Content
Abstract
In this research a review of the existent bibliography was made on the constitutive models employees for the simulation of the soil compaction by means of the finite elements method. Non linear elastic models were analyzed as the hyperbolic and the elastoplastic models of Mohr-Coulomb, Drucker-Prager, cap of Drucker-Prager and the modified Cam-Clay. The results showed that these are the models more used due to their simplicity; little quantity of constitutive parameters and to their obtaining in laboratories of soil mechanics. Also, it was based that due to the ver y shor t soil loading period during the wheel traffic, it is simpler and more convenient to use for mulations in ter ms of total stresses instead of effective stresses, and the realization of the agricultural machinery operations to low speeds, allows not to include the dynamic effects, which contribute to the model a theoretical and computational additional complexity
Article Details
Those authors that have publications with this journal accept the following terms:
1. They will retain their copyright and guarantee the journal the right of first publication of their work, which will be simultaneously subject to the License Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows third parties to share the work whenever its author is indicated and its first publication this journal. Under this license the author will be free of:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
• NonCommercial — You may not use the material for commercial purposes.
• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
2. The authors may adopt other non-exclusive license agreements to distribute the published version of the work (e.g., deposit it in an institutional telematics file or publish it in a monographic volume) whenever the initial publication is indicated in this journal.
3. The authors are allowed and recommended disseminating their work through the Internet (e.g. in institutional telematics archives or on their website) before and during the submission process, which can produce interesting exchanges and increase the citations of the published work. (See the Effect of open access).
References
ABAQUS: Abaqus analysis user’s manual., Ed. Hibbitt, Karlsson, and Sorensen, Inc, Pawtucket, Rhode Island, 2008.
BAILEY, A. C. & C. E. JOHNSON: “A soil compaction model for cylindrical stress states”, Trans. Am. Soc. Agric. Eng., 32: 822-825, 1989.
BAILEY, A. C.; C. E. JOHNSON & R. L. SCHAFER: “A model for agricult ural soil compaction”, J. Agric. Engng. Res., 33: 257-262, 1986.
BERLI, M.: Compaction of agricultural subsoils by tracked heavy construction machinery, Ph. D. Tesis, Swiss Federal Institute of
Technoloy, Zürich, Switzerland, 2001.
BERLI, M.; J. M. KIRBY; S. M. SPRI NGMAN & R. SCHULI N: “Modelling compaction of a gricult ural subsoils by tracked heavy
constr uction machiner y under various moist ure conditions in Switzerland”, Soil Till. Res., 73: 57-66, 2003.
BIRIS, S. S.; V. VLADUT; N. UNGUREANU; G. PARASCHIV & G. VOICU: “Development and experimental testing of a FEM model for
the st ress distribution analysis in agricult ural soil due to ar tificial compaction”, Agriculturae Conspectus Scientificus., 74(1): 21-29, 2009.
CHI, L. y R. L. KUSHWAHA: Study of mechanical properties of agricultural soil for non-linear F.E. model. En: Annual International
Meeting. ASAE, 1988.
CHI, L.; S. TESSIER & C. LAGUÉ: “Finite element modeling of soil compaction by liquid manure spreaders”, Trans. Am. Soc. Agric.
Eng., 36(3): 637-644, 1993a.
CHI, L.; S. TESSIER; E. MCKYES & C. LAGUÉ: “Modeling mechanical behavior of agricult ural soils.”, Trans. Am. Soc. Agric. Eng.,
: 1563-1570, 1993b.
DEGIRMENCIOGLU, A.; A. K. SRIVASTAVA; L. J. SEGERLI ND; R. H. WILKI NSON & T. H. WOLFF: A methodology based st udy
on soil-tire interface pressures using finite element method. En: ASAE Annual International Meeting, Minneapolis, Minnesota. 1997.
DESAI, C. S.: “Constit utive Modeling for Geologic Materials: Significance and Directions”, Intern. J. of Geomech., June: 81-84, 2005.
FERVERS, C. W.: “Improved FEM simulation model for tire-soil interaction”, J. Terramech., 41: 87-100, 2004.
GONZÁLEZ, O.: Modelación de la compactación provocada por el t ráfico de neumát icos, de los vehículos agrícolas, en suelos en con-
diciones de laboratorio, Ph. D. Tesis, Universidad Agraria de la Habana, San José de las Lajas, Cuba, 2011.
GONZÁLEZ, O.; M. HERRERA-SUÁREZ; C. E. IGLESIAS-CORONEL; E. LÓPEZ-BRAVO y A. SÁNCHEZ-IZNAGA: Modelación
de la compactación del suelo mediante el método de elementos finitos, aplicación a la selección de neumáticos. En: IV Conferencia
AGROCENTRO, Santa Clara. 2009.
GYSI, M.: “Compaction of a Eutric Cambisol under heavy wheel traffic in Switzerland: Field data and a critical state soil mechanics model
approach.”, Soil Till. Res., 61: 133-142, 2001.
HAN, L. H.; J. A. ELLIOTT; A. C. BENTHAM; A. MILLS; G. E. AMIDON & B. C. HANCOCK: “A modified Dr ucker-Prager Cap
model for die compaction simulation of phar maceutical powders”, International Journal of Solids and Structures, 45: 3088–3106, 2008.
HELWANY, S.: Applied soil mechanics with Abaqus applications, Ed. John Wiley & Sons, Inc, 2007.
HERRERA, M.: Simulación del comportamiento mecánico de los suelos Ferralíticos rojos mediante el Método de Elementos Finitos Ph.
D. Tesi s, Universidad Cent ral “Mar ta Abreu” de las Villas, Santa Clara, Cuba, 2006.
HERRERA, M.; O. GONZÁLEZ; C. E. IGLESIAS; A. A. DE LA ROSA y R. MADRUGA: “Est udio de la exactit ud del modelo hiperbó-
lico de Duncan y Chan en la predicción de la relación esfuerzo defor mación de tres suelos arcillosos cubanos”, Revista Ciencias Técnicas
Agropecuarias, 19(4): 24-29, 2010.
KIRBY, J. M.; B. J. BLUNDEN & C. R. TREI N: “Simulating soil defor mation using a critical state model: ll. Soil compaction beneath
t yres and tracks”, Eur. J. of Soil Sci., 48: 59-70, 1997.
KONDNER, R. L. & J. S. ZELASKO: “A hyperbolic stress-strain response: cohesive soils”, J. Soil Mechanics and Found Div. ASCE,
(SM1): 115-143, 1963.
LIU, J.: “Investigation of the stress-strain relationship of sand”, J. of Terramech., 32(5): 221-230, 1995.
PERUMPRAL, J. V.; J. B. LILJEDAHL & W. H. PERLOFF: “A numerical method for predicting the stress distribution and soil defor-
mation under a tractor wheel. “, J. of Terramech., 8: 9-22, 1971.
POLLOCK, D.; J. V. PERUMPRAL & T. KUPPUSAMY: “Finite element analysis of multipass effects of vehicle on soil compaction”,
Trans. Am. Soc. Agric. Eng., 29(1): 45-50, 1986.
PREVOST, J. H. & R. POPESCU: “Constit utive Relations for Soil Materials”, Electronic J. of Geotechnical Engng., Paper 1996-09: 1996.
RAPER, R. L. & D. C. ERBACH: “Prediction of soil stress using the finite element method”, Trans. Am. Soc. Agric. Eng., 33(3): 725-730,
RASHIDI, M.; M. GHOLAMI; I. RANJBAR & S. ABBASSI: “Finite Element Modeling of Soil Sinkage by Multiple Loadings”, AmericanEurasian
J.
Agric.
& Environ.
Sci.,
(3):
-300,
ROSA, U. A. & D. WULFSOHN: “Constit utive model for high speed tillage using nar row tools”, J. of Terramech., 36: 221-234, 1999.
ROSCOE, K. H. & J. B. BURLAND: “Engineering Plasticit y”, On the generalized stress-strain behaviour of “wet” clay, pp 535-609, Ed.
Heyman, J. y. F. A. L.: Cambridge University Press, 1968.
SHEN, J. & R. L. KUSHWAHA: Soil-machine interactions. A finite element perspective, Ed. Marcel Dekker Inc, New York, 1988.
TRIPODI, M. A.; V. M. PURI; H. B. MANBECK & G. L. MESSI NG: “Constit utive Models for Cohesive Par ticulate Materials “, J. Agric.
Engng. Res., 53: 1-21, 1992.
WULFSOHN, D. & B. A. ADAMS: “ Advances in Soil Dynamics Volume 2”, Elastoplastic soil mechanics, pp 1-116, St. Joseph, Mich.:
ASAE, 2002.
WULFSOHN, D.; B. A. ADAMS & D. G. FREDLUND: “Triaxial Testing of Unsat urated Agricult ural Soils”, J. Agric. Engng. Res.,
: 317-330, 1998.