Analysis of constitutive models used to simulate soil compaction by mean of finite elements method

Main Article Content

Omar González-Cueto

Abstract

In this research a review of the existent bibliography was made on the constitutive models employees for the simulation of the soil compaction by means of the finite elements method. Non linear elastic models were analyzed as the hyperbolic and the elastoplastic models of Mohr-Coulomb, Drucker-Prager, cap of Drucker-Prager and the modified Cam-Clay. The results showed that these are the models more used due to their simplicity; little quantity of constitutive parameters and to their obtaining in laboratories of soil mechanics. Also, it was based that due to the ver y shor t soil loading period during the wheel traffic, it is simpler and more convenient to use for mulations in ter ms of total stresses instead of effective stresses, and the realization of the agricultural machinery operations to low speeds, allows not to include the dynamic effects, which contribute to the model a theoretical and computational additional complexity

Article Details

How to Cite
González-Cueto, O. (2013). Analysis of constitutive models used to simulate soil compaction by mean of finite elements method. Revista Ciencias Técnicas Agropecuarias, 22(3), 75–80. Retrieved from https://revistas.unah.edu.cu/index.php/rcta/article/view/233
Section
Review
Author Biography

Omar González-Cueto, Dr.C.

Universidad Central de Las Villas. Departamento Ing. Agrícola, Villa Clara,

References

ABAQUS: Abaqus analysis user’s manual., Ed. Hibbitt, Karlsson, and Sorensen, Inc, Pawtucket, Rhode Island, 2008.

BAILEY, A. C. & C. E. JOHNSON: “A soil compaction model for cylindrical stress states”, Trans. Am. Soc. Agric. Eng., 32: 822-825, 1989.

BAILEY, A. C.; C. E. JOHNSON & R. L. SCHAFER: “A model for agricult ural soil compaction”, J. Agric. Engng. Res., 33: 257-262, 1986.

BERLI, M.: Compaction of agricultural subsoils by tracked heavy construction machinery, Ph. D. Tesis, Swiss Federal Institute of

Technoloy, Zürich, Switzerland, 2001.

BERLI, M.; J. M. KIRBY; S. M. SPRI NGMAN & R. SCHULI N: “Modelling compaction of a gricult ural subsoils by tracked heavy

constr uction machiner y under various moist ure conditions in Switzerland”, Soil Till. Res., 73: 57-66, 2003.

BIRIS, S. S.; V. VLADUT; N. UNGUREANU; G. PARASCHIV & G. VOICU: “Development and experimental testing of a FEM model for

the st ress distribution analysis in agricult ural soil due to ar tificial compaction”, Agriculturae Conspectus Scientificus., 74(1): 21-29, 2009.

CHI, L. y R. L. KUSHWAHA: Study of mechanical properties of agricultural soil for non-linear F.E. model. En: Annual International

Meeting. ASAE, 1988.

CHI, L.; S. TESSIER & C. LAGUÉ: “Finite element modeling of soil compaction by liquid manure spreaders”, Trans. Am. Soc. Agric.

Eng., 36(3): 637-644, 1993a.

CHI, L.; S. TESSIER; E. MCKYES & C. LAGUÉ: “Modeling mechanical behavior of agricult ural soils.”, Trans. Am. Soc. Agric. Eng.,

: 1563-1570, 1993b.

DEGIRMENCIOGLU, A.; A. K. SRIVASTAVA; L. J. SEGERLI ND; R. H. WILKI NSON & T. H. WOLFF: A methodology based st udy

on soil-tire interface pressures using finite element method. En: ASAE Annual International Meeting, Minneapolis, Minnesota. 1997.

DESAI, C. S.: “Constit utive Modeling for Geologic Materials: Significance and Directions”, Intern. J. of Geomech., June: 81-84, 2005.

FERVERS, C. W.: “Improved FEM simulation model for tire-soil interaction”, J. Terramech., 41: 87-100, 2004.

GONZÁLEZ, O.: Modelación de la compactación provocada por el t ráfico de neumát icos, de los vehículos agrícolas, en suelos en con-

diciones de laboratorio, Ph. D. Tesis, Universidad Agraria de la Habana, San José de las Lajas, Cuba, 2011.

GONZÁLEZ, O.; M. HERRERA-SUÁREZ; C. E. IGLESIAS-CORONEL; E. LÓPEZ-BRAVO y A. SÁNCHEZ-IZNAGA: Modelación

de la compactación del suelo mediante el método de elementos finitos, aplicación a la selección de neumáticos. En: IV Conferencia

AGROCENTRO, Santa Clara. 2009.

GYSI, M.: “Compaction of a Eutric Cambisol under heavy wheel traffic in Switzerland: Field data and a critical state soil mechanics model

approach.”, Soil Till. Res., 61: 133-142, 2001.

HAN, L. H.; J. A. ELLIOTT; A. C. BENTHAM; A. MILLS; G. E. AMIDON & B. C. HANCOCK: “A modified Dr ucker-Prager Cap

model for die compaction simulation of phar maceutical powders”, International Journal of Solids and Structures, 45: 3088–3106, 2008.

HELWANY, S.: Applied soil mechanics with Abaqus applications, Ed. John Wiley & Sons, Inc, 2007.

HERRERA, M.: Simulación del comportamiento mecánico de los suelos Ferralíticos rojos mediante el Método de Elementos Finitos Ph.

D. Tesi s, Universidad Cent ral “Mar ta Abreu” de las Villas, Santa Clara, Cuba, 2006.

HERRERA, M.; O. GONZÁLEZ; C. E. IGLESIAS; A. A. DE LA ROSA y R. MADRUGA: “Est udio de la exactit ud del modelo hiperbó-

lico de Duncan y Chan en la predicción de la relación esfuerzo defor mación de tres suelos arcillosos cubanos”, Revista Ciencias Técnicas

Agropecuarias, 19(4): 24-29, 2010.

KIRBY, J. M.; B. J. BLUNDEN & C. R. TREI N: “Simulating soil defor mation using a critical state model: ll. Soil compaction beneath

t yres and tracks”, Eur. J. of Soil Sci., 48: 59-70, 1997.

KONDNER, R. L. & J. S. ZELASKO: “A hyperbolic stress-strain response: cohesive soils”, J. Soil Mechanics and Found Div. ASCE,

(SM1): 115-143, 1963.

LIU, J.: “Investigation of the stress-strain relationship of sand”, J. of Terramech., 32(5): 221-230, 1995.

PERUMPRAL, J. V.; J. B. LILJEDAHL & W. H. PERLOFF: “A numerical method for predicting the stress distribution and soil defor-

mation under a tractor wheel. “, J. of Terramech., 8: 9-22, 1971.

POLLOCK, D.; J. V. PERUMPRAL & T. KUPPUSAMY: “Finite element analysis of multipass effects of vehicle on soil compaction”,

Trans. Am. Soc. Agric. Eng., 29(1): 45-50, 1986.

PREVOST, J. H. & R. POPESCU: “Constit utive Relations for Soil Materials”, Electronic J. of Geotechnical Engng., Paper 1996-09: 1996.

RAPER, R. L. & D. C. ERBACH: “Prediction of soil stress using the finite element method”, Trans. Am. Soc. Agric. Eng., 33(3): 725-730,

RASHIDI, M.; M. GHOLAMI; I. RANJBAR & S. ABBASSI: “Finite Element Modeling of Soil Sinkage by Multiple Loadings”, AmericanEurasian

J.

Agric.

& Environ.

Sci.,

(3):

-300,

ROSA, U. A. & D. WULFSOHN: “Constit utive model for high speed tillage using nar row tools”, J. of Terramech., 36: 221-234, 1999.

ROSCOE, K. H. & J. B. BURLAND: “Engineering Plasticit y”, On the generalized stress-strain behaviour of “wet” clay, pp 535-609, Ed.

Heyman, J. y. F. A. L.: Cambridge University Press, 1968.

SHEN, J. & R. L. KUSHWAHA: Soil-machine interactions. A finite element perspective, Ed. Marcel Dekker Inc, New York, 1988.

TRIPODI, M. A.; V. M. PURI; H. B. MANBECK & G. L. MESSI NG: “Constit utive Models for Cohesive Par ticulate Materials “, J. Agric.

Engng. Res., 53: 1-21, 1992.

WULFSOHN, D. & B. A. ADAMS: “ Advances in Soil Dynamics Volume 2”, Elastoplastic soil mechanics, pp 1-116, St. Joseph, Mich.:

ASAE, 2002.

WULFSOHN, D.; B. A. ADAMS & D. G. FREDLUND: “Triaxial Testing of Unsat urated Agricult ural Soils”, J. Agric. Engng. Res.,

: 317-330, 1998.

Most read articles by the same author(s)

1 2 > >>