Estimation of Infection Severity in Sugarcane Using Satellite Images
Main Article Content
Abstract
Brown rust (Puccinia melanocephala) contamination in sugarcane (Saccharum spp.) is a major problem because of the costs it imposes on growers. Based on a recent study using hyperspectral analysis at the laboratory level as well as multispectral analysis by unmanned aerial vehicle (UAV), this work undertook the task of estimating brown rust infection using multispectral images (MSI) from the Sentinel-2 satellite constellation. The results show a high agreement between the estimation by UAV, the one obtained by satellite images and the one observed in the field by a specialist. These results make it possible to extend the estimation of the infection of this disease to large areas, reducing the costs involved in moving the UAV to the regions to be studied, where it can only cover a limited space in each flight.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Those authors that have publications with this journal accept the following terms:
1. They will retain their copyright and guarantee the journal the right of first publication of their work, which will be simultaneously subject to the License Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows third parties to share the work whenever its author is indicated and its first publication this journal. Under this license the author will be free of:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
• NonCommercial — You may not use the material for commercial purposes.
• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
2. The authors may adopt other non-exclusive license agreements to distribute the published version of the work (e.g., deposit it in an institutional telematics file or publish it in a monographic volume) whenever the initial publication is indicated in this journal.
3. The authors are allowed and recommended disseminating their work through the Internet (e.g. in institutional telematics archives or on their website) before and during the submission process, which can produce interesting exchanges and increase the citations of the published work. (See the Effect of open access).
References
ADAY-DÍAZ, O. de la C.; MONTALVÁN DELGADO, J.; DELGADO PADRÓN, J.; PUCHADES IZAGUIRRE, Y.; RODRÍGUEZ LEMA, E.L.; ALFONSO-TERRY, I.: “Orange rust disease progress in different plantation cycles of sugarcane in Cuba”, Sugar Tech, 22(6): 1057-1062, 2020, ISSN: 0972-1525, DOI: 10.1007/s12355-020-00843-w.
AMARASINGAM, N.; SALGADOE, A.A.; POWELL, K.; GONZALEZ, L.F.; NATARAJAN, S.: “A review of UAV platforms, sensors, and applications for monitoring of sugarcane crops”, Remote Sensing Applications: Society and Environment, 26: 100712, 2022, ISSN: 2352-9385, DOI: 10.1016/j.rsase.2022.100712.
CAASI, O.; HONGO, C.; WIYONO, S.; GIAMERTI, Y.; SAITO, D.; HOMMA, K.; SHISHIDO, M.: “The potential of using Sentinel-2 satellite imagery in assessing bacterial leaf blight on rice in West Java, Indonesia”, Journal of International Society for Southeast Asian Agricultural Sciences, 26(1): 1-16, 2020.
ESA: Sentinel-2 user handbook, Ed. European Space Agency, 64 p., 2015.
GRISHAM, M.P.; WARNKE, K.Z.; MAGGIO, J.R.; TODD, J.R.; DAVIDSON, W.; HAUDENSHIELD, J.S.; HARTMAN, G.L.; HERNANDEZ, E.; SCOTT, A.; COMSTOCK, J.K.: “First Report of Puccinia kuehnii Causing Orange Rust of Sugarcane in Texas, USA”, Plant disease, 104(10): 2731, 2020, ISSN: 0191-2917, DOI: 10.1094/pdis-10-19-2117-pdn.
GRUBER, A.; DE LANNOY, G.; ALBERGEL, C.; AL-YAARI, A.; BROCCA, L.; CALVET, J.-C.; COLLIANDER, A.; COSH, M.; DAVIDSON, W.; DORIGO, W.: “Validation practices for satellite soil moisture retrievals: What are (the) errors?”, Remote sensing of environment, 244: 111806, 2020, ISSN: 0034-4257, DOI: 10.1016/j.rse.2020.111806.
KHARUF-GUTIERREZ, S.; HERNÁNDEZ-SANTANA, L.; OROZCO-MORALES, R.; ADAY-DÍAZ, O. de la C.; DELGADO MORA, I.: “Análisis de imágenes multiespectrales adquiridas con vehículos aéreos no tripulados”, Ingeniería electrónica, automática y comunicaciones, 39(2): 79-91, 2018a, ISSN: 1815-5928, DOI: 10.18046/syt.v16i47.3221.
KHARUF-GUTIERREZ, S.; OROZCO-MORALES, R.; ADAY-DÍAZ, O. de la C.; PINEDA-RUIZ, E.: “Multispectral aerial image processing system for precision agriculture”, Sistemas y Telemática, 16(47), 2018b, ISSN: 1692-5238.
LASTOVICKA, J.; SVEC, P.; PALUBA, D.; KOBLIUK, N.; SVOBODA, J.; HLADKY, R.; STYCH, P.: “Sentinel-2 data in an evaluation of the impact of the disturbances on forest vegetation”, Remote Sensing, 12(12): 1914, 2020, ISSN: 2072-4292, DOI: 10.3390/rs12121914.
LÓPEZ-BRAVO, E.; PLACERES-REMIOR, A.; GONZÁLEZ-CUETO, O.; HERRERA-SUÁREZ, M.: “Monitoring of Sugarcane Cultivation Using Satellite Images”, Revista Ciencias Técnicas Agropecuarias, 31(3), 2022, ISSN: 2071-0054.
LU, B.; DAO, P.D.; LIU, J.; HE, Y.; SHANG, J.: “Recent advances of hyperspectral imaging technology and applications in agriculture”, Remote Sensing, 12(16): 2659, 2020, ISSN: 2072-4292, DOI: 10.3390/rs12162659.
MÜLLEROVÁ, J.; BRŮNA, J.; BARTALOŠ, T.; DVOŘÁK, P.; VÍTKOVÁ, M.; PYŠEK, P.: “Timing is important: Unmanned aircraft vs. satellite imagery in plant invasion monitoring”, Frontiers in Plant Science, 8: 887, 2017, ISSN: 1664-462X, DOI: 10.3389/fpls.2017.00887.
RUAN, C.; DONG, Y.; HUANG, W.; HUANG, L.; YE, H.; MA, H.; GUO, A.; REN, Y.: “Prediction of wheat stripe rust occurrence with time series sentinel-2 images”, Agriculture, 11(11): 1079, 2021, ISSN: 2077-0472, DOI: 10.3390/agriculture11111079.
SEGARRA, J.; BUCHAILLOT, M.L.; ARAUS, J.L.; KEFAUVER, S.C.: “Remote sensing for precision agriculture: Sentinel-2 improved features and applications”, Agronomy, 10(5): 641, 2020, ISSN: 2073-4395, DOI: 10.3390/agronomy10050641.
SOCA-MUÑOZ, J.L.; RODRÍGUEZ-MACHADO, E.; ADAY-DÍAZ, O. de la C.; HERNÁNDEZ-SANTANA, L.; OROZCO-MORALES, R.: “Spectral signature of brown rust and orange rust in sugarcane”, Revista Facultad de Ingeniería Universidad de Antioquia, (96): 9-20, 2020, ISSN: 0120-6230, DOI: 10.17533/udea.redin.20191042.
SOM-ARD, J.; ATZBERGER, C.; IZQUIERDO-VERDIGUIER, E.; VUOLO, F.; AL-ZAHRANI, M.: “Remote sensing applications in sugarcane cultivation: A review”, Remote sensing, 13(20): 4040, 2021, ISSN: 2072-4292, DOI: 10.3390/rs13204040.
SWAMI, M.: “A new toolbox for mapping regulatory sites”, Nature Reviews Genetics, 10(5): 282-283, 2009, ISSN: 1471-0056. DOI: 10.1038/nrg2584.
THE MATH WORKS: Mapping ToolboxTM User’s Guide, Mapping ToolboxTM, 2009.
VAUDOUR, E.; GOMEZ, C.; LAGACHERIE, P.; LOISEAU, T.; BAGHDADI, N.; URBINA-SALAZAR, D.; LOUBET, B.; ARROUAYS, D.: “Temporal mosaicking approaches of Sentinel-2 images for extending topsoil organic carbon content mapping in croplands”, International Journal of Applied Earth Observation and Geoinformation, 96: 102277, 2021, ISSN: 1569-8432, DOI: 10.1016/j.jag.2020.102277.
WANG, J.; XIAO, X.; LIU, L.; WU, X.; QIN, Y.; STEINER, J.L.; DONG, J.: “Mapping sugarcane plantation dynamics in Guangxi, China, by time series Sentinel-1, Sentinel-2 and Landsat images”, Remote sensing of environment, 247: 111951, 2020, ISSN: 0034-4257, DOI: 10.1016/j.rse.2020.111951.
WANG, M.; LIU, Z.; BAIG, M.H.; WANG, Y.; LI, Y.; CHEN, Y.: “Mapping sugarcane in complex landscapes by integrating multi-temporal Sentinel-2 images and machine learning algorithms”, Land use policy, 88: 104190, 2019, ISSN: 0264-8377, DOI: 10.1016/j.landusepol.2019.104.
XU, Z.; CAO, L.; ZHONG, S.; LIU, G.; YANG, Y.; ZHU, S.; LUO, X.; DI, L.: “Trends in global vegetative drought from long-term satellite remote sensing data”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 815-826, 2020, ISSN: 1939-1404. DOI: 10.1109/JSTARS.2020.2972574.
ZHENG, Q.; HUANG, W.; CUI, X.; SHI, Y.; LIU, L.: “New spectral index for detecting wheat yellow rust using Sentinel-2 multispectral imagery”, Sensors, 18(3): 868, 2018, ISSN: 1424-8220, DOI: 10.3390/s18030868.