Monitoring of Sugarcane Cultivation Using Satellite Images

Main Article Content

Elvis López Bravo
Arley Placeres Remior
Omar González-Cueto
Miguel Herrera-Suárez

Abstract

In the present work, the vegetation indices obtained from satellite images are used to monitoring sugarcane crop. The study was carried out in 5,5 ha of sugarcane field, planted with CP 52-43 variety located in Camajuaní Municipality, Cuba. Vegetative evolution of the plantation was monitored by field measurements of leaf width, stem diameter, stem height, soil moisture and vegetal cover, using the diagonal distribution method for samples collection. The services available in Earth Observed System (EOS) were used to obtain images of vegetative index of: NDVI, SAVI, EVI and NDWI. The initial stage of crop was characterized by low values of soil moisture and foliar development of sugarcane plants, EVI and NDVI indices showed results according to the low vegetative development with values between 0,2 and 0,4, while NDWI agreed with dry soil. In the rainy season, after the fourth month of the plantation, an increase in soil moisture to 42,9% took place, the plants´ biophysics parameters: stem height, stem diameter and leaf width also increased, EVI index reached between 0,6 and 0,8 in 74,4% crop area and in the same way NDVI index showed values between 0,7 to 0,8. However, NDWI index showed values between -1 and -0.6 belonging to dry soil, no matching with the actual moisture conditions. Through monitoring with Sentinel-2 satellite, a more stable representation of the increase in vegetation was achieved, as well as more adequate values of the initial and final state of the crop were obtained.

Article Details

How to Cite
López Bravo, E., Placeres Remior, A., González-Cueto, O., & Herrera-Suárez, M. (2022). Monitoring of Sugarcane Cultivation Using Satellite Images. Revista Ciencias Técnicas Agropecuarias, 31(3). Retrieved from https://revistas.unah.edu.cu/index.php/rcta/article/view/1643
Section
Original Articles

References

AGUILAR, P. A.; PÉREZ, J. A.; AGUILAR, D.: "Nuevos paradigmas en la cosecha de la caña para el uso sustentable de toda la biomasa en las bioeléctricas. Parte I", ICIDCA. Sobre los Derivados de la Caña de Azúcar, vol. 50 (3): 3-8, 2016. ISSN:0138-6204.

ALVAREZ, A.: Consideraciones económicas sobre algunas de las principales prácticas agronomicas en caña de azúcar. En: 50 aniversario del INICA, pp. 148, La Habana, Cuba. 2014.

DE GRAVE, C.; VERRELST, J.; MORCILLO, P.; PIPIA, L.; RIVERA, J. P.; AMIN, E.; MORENO, J.: "Quantifying vegetation biophysical variables from the Sentinel-3/FLEX tandem mission: Evaluation of the synergy of OLCI and FLORIS data sources", Remote Sensing of Environment, vol. 25 (1): 112-101, 2020. ISSN:1879-0704.

FLORES, J. R. N.: Diseño experimental: Aplicaciones en agricultura, 316pp., Costa Rica, Editorial UCR, 2006, ISBN: 9789-9776-78900.

GILABERT, M. A.; GONZÁLEZ, J.; GARCIA, F. J.; MELIÁ, J: "A generalized soil-adjusted vegetation index.", Remote Sensing of Environment, vol. 82 (1): 303-310, 2002. ISSN:1879-0704.

GUTIERREZ, S. K.; SANTANA, L. H.;. MORALES, R. O; O. DÍAZ, A. MORA, I. D.: "Análisis de imágenes multiespectrales adquiridas con vehículos aéreos no tripulados en agricultura de precisión", Revista Ingeniería Electrónica, Automática y Comunicaciones, vol. 39 (2): 2018. ISSN:1815-5928.

HATFIELD, J. L. PRUEGER, ; J. H.; SAUER, T. J.; DOLD, C.; O’BRIEN, P; WACHA, K.: "Applications of Vegetative Indices from Remote Sensing to Agriculture: Past and Future", Inventions, vol. 4 (4): 71, 2019. ISSN:2411-5134.

KHARUF, G. S.; HERNÁNDEZ, L.; OROZCO, R.; ADAY, O. D. L. C.; DELGADO, M. I.: "Análisis de imágenes multiespectrales adquiridas con vehículos aéreos no tripulados", Ingeniería Electrónica, Automática y Comunicaciones, vol. 39 (1): 79-91, 2018. ISSN:1815-5928.

NC 3437:2003: Máquinas Agrícolas y Forestales. Metodología para la determinación de las condiciones de ensayo., Vig. Septiembre 2003.

ROSELL, P. R.; RAMÍREZ, A: "Evaluación de la frescura de la caña de azúcar para minimizar pérdidas industriales (Original)", Redel. Revista Granmense de Desarrollo Local, vol. 5 (2): 107-119, 2021. ISSN:2664-3065.

SEGARRA, J.; BUCHAILLOT, M. L.; JARAUS, . L. KEFAUVER, S. C.: "Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications", Agronomy, vol. 10 (5): 641, 2020. ISSN:2073-4395.

SENAY, G.; WARD, A.; LYON, J.; FAUSEY, N. NOKES, S.: "Manipulation of high spatial resolution aicraft remote sensing data for use in site-specific farming", Transation of ASAE, vol. 41 (1): 489-495, 2014. ISSN:0001-2351., S. K.

SISHODIA, R. P.; RAY, R. L. SINGH: "Applications of Remote Sensing in Precision Agriculture: A Review", Remote Sensing, vol. 12 (19): 31-36, 2020. ISSN:1879-0704.

TAIZ, L.; ZEIGER, E.: Fisiología vegetal, Universitat Jaume I, 2006, ISBN: 9788480216012.

TRIANTAFYLLOU, A.; SARIGIANNIDIS, P.; BIBI, S.: "Precision Agriculture: A Remote Sensing Monitoring System Architecture", Information, vol. 10 (11): 348-354, 2019. ISSN:2078-2489.

WANG, F.; HUANG, J.; CHEN, L.: "Development of a vegetation index for estimation of leaf area index based on simulation modeling", Journal of Plant Nutrition, vol. 33(3):328-338 2010. ISSN:0190-4167.

XIE, Q.; DASH, J.; HUETE, A.; JIANG, A.; YIN, G.; DING, Y., HUANG, W.: "Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery", International Journal of Applied Earth Observation and Geoinformation, vol. 80 (1): 187-195, 2019. ISSN:0303-2434.

Most read articles by the same author(s)

1 2 3 > >>