Static Pressure Drop across a Bed of Coffee Beans: Finite Element Analysis
Main Article Content
Abstract
Article Details
Those authors that have publications with this journal accept the following terms:
1. They will retain their copyright and guarantee the journal the right of first publication of their work, which will be simultaneously subject to the License Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows third parties to share the work whenever its author is indicated and its first publication this journal. Under this license the author will be free of:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
• NonCommercial — You may not use the material for commercial purposes.
• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
2. The authors may adopt other non-exclusive license agreements to distribute the published version of the work (e.g., deposit it in an institutional telematics file or publish it in a monographic volume) whenever the initial publication is indicated in this journal.
3. The authors are allowed and recommended disseminating their work through the Internet (e.g. in institutional telematics archives or on their website) before and during the submission process, which can produce interesting exchanges and increase the citations of the published work. (See the Effect of open access).
References
AFONSO, A.D.L.: Gradiente de pressão estática em camadas de fruto de café (Coffea arábica L.) com diferentes teores de umidade. Dissertação de Mestrado, [en línea], Universidade Federal de Viçosa, Viçosa, MG, Brasil, 68 p., 1994, Disponible en: http://www.sbicafe.ufv.br/handle/123456789/67, [Consulta: 12 de enero de 2018].
ANSYS: Ansys/Multiphysics Product (Program and Program Documentation), (Versión ANSYS Inc, 2013), Ed. ANSYS, Houston, Texas, USA, 2013.
BEIGI, M.: “Numerical simulation of potato slices drying using a two-dimensional finite element model”, Chemical Industry & Chemical Engineering Quarterly, 23(3): 431-440, 2017, ISSN: 2217-7434, DOI: 10.2298/CICEQ160530057B.
BRANDÃO, F.J.B.; DA SILVA, M.A.P.; SPEROTTO, F.C.S.; JASPER, S.P.; BEZERRA, P.H.S.; BIAGGIONI, M.A.M.: “Variation of static pressure in a crambe (Crambe abyssinica Hochst) grains column”, African Journal of Agricultural Research, 11(1): 16–22, 2016, ISSN: 1991-637X, DOI: 10.5897/AJAR2015.10489.
BROOKER, D.B.; BAKKER-ARKEMA, F.W.; HALL, C.W.: Drying and storage of grains and oilseeds, Ed. Springer Science & Business Media, New York, 450 p., 1992, ISBN: 978-0-442-20515-7.
CHIANG, C.-C.; WU, D.-Y.; KANG, D.-Y.: “Detailed Simulation of Fluid Dynamics and Heat Transfer in Coffee Bean Roaster”, Journal of food process engineering, 40(2): 1-7, 2017, ISSN: 1745-4530, DOI: 10.1111/jfpe.12398.
CORRÊA, P.C.; GUIMARÃES, W.T.; ANDRADE, E.T.: “Resistência ao fluxo de ar em camadas de grãos de feijão afetada pelo teor de impureza”, Revista Brasileira de Armazenamento, 26: 53–59, 2001, ISSN: 0100-3518.
DA SILVA, D.J.; COUTO, S.M.; PEIXOTO, A.B.; DOS SANTOS, A.E.; VIEIRA, S.M.: “Resistência de café em coco e despolpado ao fluxo de ar”, Revista Brasileira de Engenharia Agrícola e Ambiental, 2006, ISSN: 1415-4366, DOI: 10.1590/S1415-43662002000300025.
DE ANDRADE, E.T.; COUTO, S.M.; DE QUEIROZ, D.M.: “Distribuição da pressão estática em uma coluna de canola: análise por elementos finitos”, Revista Brasileira de Engenharia Agrícola e Ambiental, 5(2): 288–295, 2001, ISSN: 1807-1929.
DEVILLA, I.A.; COUTO, S.M.; DE QUEIROZ, D.M.: “Distribuição do fluxo de ar em silos com sistema de aeração&58; análise por elementos finitos Airflow distribution in aerated silos&58; finite element analysis”, Revista Brasileira de Engenharia Agrícola e Ambiental-Agriambi, 9(2): 256–262, 2005, ISSN: 1415-4366, DOI: 10.1590/S1415-43662005000200017.
DILMAC, M.; TARHAN, S.; POLATCI, H.: “Aerodynamic properties of Faba bean (Vicia faba L.) Seeds”, Legume Research-An International Journal, 39(3): 379–384, 2016, ISSN: 0976-0571, DOI: 10.18805/lr.v39i3.10751.
DU, W.; QUAN, N.; LU, P.; XU, J.; WEI, W.; ZHANG, L.: “Experimental and statistical analysis of the void size distribution and pressure drop validations in packed beds”, Chemical Engineering Research and Design, 106: 115–125, 2016, ISSN: 0263-8762, DOI: 10.1016/j.cherd.2015.11.023.
ERGUN, S.: “Fluid flow through packed columns”, Chem. Eng. Prog., 48: 89–94, 1952, ISSN: 0360-7275.
GAO, M.; CHENG, X.; DU, X.: “Simulation of bulk density distribution of wheat in silos by finite element analysis”, Journal of Stored Products Research, 77: 1–8, 2018, ISSN: 0022-474X, DOI: 10.1016/j.jspr.2018.02.003.
GINER, S.A.; DENISIENIA, E.: “Pressure drop through wheat as affected by air velocity, moisture content and fines”, Journal of Agricultural Engineering Research, 63(1): 73–85, 1996, ISSN: 0021-8634, DOI: 10.1006/jaer.1996.0009.
GRATÃO, P.T. da S.; DEVILLA, I.A.; SERVULO, A.C.O.; JESUS, F.F. de; FERREIRA, D. de A.: “Loss of static pressure in a column of quinoa grains”, Revista Brasileira de Engenharia Agrícola e Ambiental, 17(8): 848–854, 2013, ISSN: 1415-4366, DOI: 10.1590/S1415-43662013000800008.
HAQUE, E.; FOSTER, G.H.; CHUNG, D.S.: “Static pressure drop across a bed of corn mixed with fines”, Transactions of the ASAE, 21(5): 997–1000, 1978, ISSN: 2151-0032, DOI: 10.13031/2013.35430.
HORABIK, J.; PARAFINIUK, P.; MOLENDA, M.: “Experiments and discrete element method simulations of distribution of static load of grain bedding at bottom of shallow model silo”, Biosystems Engineering, 149: 60–71, 2016, ISSN: 1537-5110, DOI: 10.1016/j.biosystemseng.2016.06.012.
HUKILL, W.V.; IVES, N.C.: “Radial airflow resistance of grain”, Agricultural Engineering, 36(5): 332–335, 1955, ISSN: 2406-1123.
HUNTER, A.J.: “Pressure difference across an aerated seed bulk for some common duct and store cross-sections”, Journal of Agricultural Engineering Research, 28(5): 437–450, 1983, ISSN: 0021-8634, DOI: 10.1016/0021-8634(83)90135-X.
IQBAL, T.; ECKHOFF, S.R.; SYED, A.F.; NIZAMI, A.-S.; SADEF, Y.: “Airflow resistance of chopped miscanthus on drying platform”, Transactions of the ASABE, 58(2): 487–492, 2015, ISSN: 2151-0032, DOI: 10.13031/trans.58.10827.
KHATCHATOURIAN, O.A.; SAVICKI, D.L.: “Mathematical modelling of airflow in an aerated soya bean store under non-uniform conditions”, Biosystems Engineering, 88(2): 201–211, 2004, ISSN: 1537-5110, DOI: 10.1016/j.biosystemseng.2004.03.001.
KORESE, J.K.; RICHTER, U.; HENSEL, O.: “Airflow Resistance through Bulk Sweet Potato Roots”, Transactions of the ASABE, 59(4): 961–968, 2016, ISSN: 0001-2351, DOI: 10.13031/trans.59.11283.
LEMUS-MONDACA, R.A.; VEGA-GÁLVEZ, A.; ZAMBRA, C.E.; MORAGA, N.O.: “Modeling 3D conjugate heat and mass transfer for turbulent air drying of Chilean papaya in a direct contact dryer”, Heat and Mass Transfer, 53(1): 11–24, 2017, ISSN: 1432-1181, DOI: 10.1007/s00231-016-1799-0.
MOSES, J.A.; CHELLADURAI, V.; JAYAS, D.S.; ALAGUSUNDARAM, K.: “Simulation and Validation of Airflow Pressure Patterns in Hopper-Bottom Bins Filled with Wheat”, Applied engineering in agriculture, 31(2): 303–311, 2015, ISSN: 0883-8542, DOI: 10.13031/aea.31.10738.
MOSES, J.A.; JAYAS, D.S.; ALAGUSUNDARAM, K.: “Simulation and validation of airflow distribution patterns in bins filled with canola”, Journal of Agricultural Engineering, 51(4): 14–20, 2014a, ISSN: 0976-2418.
MOSES, J.A.; JAYAS, D.S.; ALAGUSUNDARAM, K.: “Simulation and validation of airflow pressure patterns for horizontal airflow through bulk canola”, Trends in Biosciences, 7(17): 2385–2391, 2014b, ISSN: 1881-7823.
MOSES, J.A.; JAYAS, D.S.; ALAGUSUNDARAM, K.: “Three-dimensional Airflow Pressure Patterns in Flat-Bottom Bins Filled with Barley for Different Duct Configurations”, Trends in Biosciences, 7(17): 2392–2396, 2014c, ISSN: 1881-7823.
OLATUNDE, G.; ATUNGULU, G.G.; SADAKA, S.: “CFD modeling of air flow distribution in rice bin storage system with different grain mass configurations”, biosystems engineering, 151: 286–297, 2016, ISSN: 1537-5110, DOI: 10.1016/j.biosystemseng.2016.09.007.
SHEDD, C.K.: “Resistance of grains and seeds to air flow”, Agricultural Engineering, 34(9): 616–619, 1953, ISSN: 2406-1123.
TEIXEIRA, D.L.; DE MATOS, A.T.; DE CASTRO MELO, E.: “Resistance to forced airflow through layers of composting organic material”, Waste management, 36: 57–62, 2015, ISSN: 0956-053X, DOI: 0.1016/j.wasman.2014.12.003.
YUE, R.; ZHANG, Q.: “A pore-scale model for predicting resistance of airflow through grain bulks”, En: 2014 Montreal, Quebec Canada July 13–July 16, 2014, Ed. American Society of Agricultural and Biological Engineers, p. 1, 2014, DOI: 10.13031/aim.20141900492, ISBN: 2151-0032.