Stochastic Linear Modeling for the Forecast of Flows in Basin, Western Region of Cuba
Main Article Content
Abstract
Article Details
Those authors that have publications with this journal accept the following terms:
1. They will retain their copyright and guarantee the journal the right of first publication of their work, which will be simultaneously subject to the License Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows third parties to share the work whenever its author is indicated and its first publication this journal. Under this license the author will be free of:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
• NonCommercial — You may not use the material for commercial purposes.
• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
2. The authors may adopt other non-exclusive license agreements to distribute the published version of the work (e.g., deposit it in an institutional telematics file or publish it in a monographic volume) whenever the initial publication is indicated in this journal.
3. The authors are allowed and recommended disseminating their work through the Internet (e.g. in institutional telematics archives or on their website) before and during the submission process, which can produce interesting exchanges and increase the citations of the published work. (See the Effect of open access).
References
ALONSO, B.G.: Modeling discharge and sediment yield for extreme events in Western Cuba, ETH, Zurich, Master of Advanced Studies in Sustainable Water Resources (MAS-SWR), Switzerland, 2015.
ALONSO, B.G.R.: Estimación del riesgo de erosión hídrica en la subcuenca V Aniversario del río Cuyaguateje, Universidad Agraria de La Habana, Tesis (en opción al grado científico de Master en Ciencias), San José de las Lajas, Mayabeque, Cuba, 102 p., 2008.
ALONSO, B.G.R.: “Predicción probabilística del escurrimiento superficial y la pérdida de sedimento para eventos extremos. Parte II”, Revista Ciencias Técnicas Agropecuarias, 25(4): 4–16, 2016, ISSN: 1010-2760, E-ISSN: 2071-0054, DOI: http://dx.doi.org/10.13140/RG.2.2.26734.61764.
AVILES, A.; SOLERA, A.; PAREDES, J.: “Análisis del rendimiento de sistemas hídricos en desarrollo mediante el acople de modelos estocásticos hidrológicos y optimización de redes de flujo”, Ingenius, (15): 48–57, 2016, ISSN: 1390-650X, DOI: http://dx.doi.org/10.17163/ings.n15.2016.05.
CONSEJO TERRITORIAL DE CUENCAS HIDROGRÁFICAS (CTCH) DE PINAR DEL RÍO: Catálogo de Cuencas Hidrográficas Río Cuyaguateje, Pinar del Río, Cuba, 2000.
CRYER, J.D.; CHAN, K.S.: Time series analysis with applications in R, Ed. Springer, 2nd. ed., USA, 505 p., 2010, ISBN: 978-0-387-75958-6.
D’AMICO, G.; PETRONI, F.; PRATTICO, F.: “Economic performance indicators of wind energy based on wind speed stochastic modeling”, Applied Energy, 154: 290–297, 2015, ISSN: 0306-2619, DOI: http://dx.doi.org/10.1016/j.apenergy.2015.04.124.
DÍAZ, M.A.; GUEVARA, E.: “Modelación estocástica de los caudales medios anuales en la cuenca del rio Santa, Perú”, Revista Ingeniería UC, 23(2), 2016, ISSN: 1316-6832.
ESTRADA, V.; PACHECO, M.R.: “Modelación hidrológica con HEC-HMS en cuencas montañosas de la región oriental de Cuba”, Ingeniería Hidráulica y Ambiental, 33(1): 94-105, 2012, ISSN: 1815–591X.
FRY, L.M.; HUNTER, T.S.; PHANIKUMAR, M.S.; FORTIN, V.; GRONEWOLD, A.D.: “Identifying streamgage networks for maximizing the effectiveness of regional water balance modeling”, Water Resources Research, 49(5): 2689–2700, 2013, ISSN: 0043-1397, DOI: http://dx.doi.org/10.1002/wrcr.20233.
LIANG, H.; ZHUANG, W.: “Stochastic modeling and optimization in a microgrid: A survey”, Energies, 7(4): 2027–2050, 2014, ISSN: 0360-5442, DOI: http://dx.doi.org/10.3390/en7042027.
METCALFE, V.A.; COWPERTWAIT, P.S.: Introductory time series with R, [en línea], Ed. Springer, 1st. ed., 259 p., 2009, ISBN: 978-0-387-88697-8, Disponible en: 10.1007/978-0-387-88698-5.
NIEZGODA, S.R.; KANJARLA, A.K.; BEYERLEIN, I.J.; TOMÉ, C.N.: “Stochastic modeling of twin nucleation in polycrystals: an application in hexagonal close-packed metals”, International journal of plasticity, 56: 119–138, 2014, ISSN: 0749-6419, DOI: http://dx.doi.org/10.1016/j.ijplas.2013.11.005.
RODRÍGUEZ, L.Y.; MARRERO DE LEÓN, N.; GIL URRUTIA, L.: “Modelo lluvia-escurrimiento para la cuenca del río Reno”, Revista Ciencias Técnicas Agropecuarias, 19(2): 31–37, 2010, ISSN: 1010-2760, E-ISSN: 2071-0054.
RODRÍGUEZ, L.Y.; MARRERO, N.: “Simulación hidrológica en dos subcuencas de la cuenca del río Zaza de Cuba”, Ingeniería Hidráulica y Ambiental, 36(2): 109–123, 2015, ISSN: 1680-0338.
SANG, Y.-F.: “A review on the applications of wavelet transform in hydrology time series analysis”, Atmospheric research, 122: 8–15, 2013, ISSN: 0169-8095, DOI: http://dx.doi.org/10.1016/j.atmosres.2012.11.003.
SHUMWAY, R.H.; STOFFER, D.S.: Time series analysis and its applications with R examples, [en línea], Ed. Springer, 3rd. ed., USA, 604 p., 2011, ISBN: 978-1-4419-7864-6, Disponible en: DOI-http://dx.doi.org/10.1007/978-1-4419-7865-3.
SUN, K.; YAN, D.; HONG, T.; GUO, S.: “Stochastic modeling of overtime occupancy and its application in building energy simulation and calibration”, Building and Environment, 79: 1–12, 2014, ISSN: 0360-1323, DOI: http://dx.doi.org/10.1016/j.buildenv.2014.04.030.
TRIVIÑO, A.; ORTIZ, S.: “Metodología para la modelación distribuida de la escorrentía superficial y la delimitación de zonas inundables en ramblas y ríos-rambla mediterráneos”, Investigaciones Geográficas (Esp), (35), 2004, ISSN: 0213-4691.
VALIPOUR, M.; BANIHABIB, M.E.; BEHBAHANI, S.M.R.: “Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir”, Journal of Hydrology, 473(7), 2013, ISSN: 0022-1694, DOI: http://dx.doi.org/10.1016/j.jhydrol.2012.11.017.
WILKS, D.S.: Statistical methods in the atmospheric sciences, Ed. Elsevier, 3rd. ed., vol. 100, 676 p., 2011, ISBN: 978-0-12-385022-5.
WU, C.L.; CHAU, K.-W.: “Prediction of rainfall time series using modular soft computingmethods”, Engineering applications of artificial intelligence, 26(3): 997–1007, 2013, ISSN: 0952-1976, DOI: http://dx.doi.org/10.1016/j.engappai.2012.05.023.