Modelación lineal estocástica para el pronóstico de caudales en cuenca, región occidental de Cuba
Contenido principal del artículo
Resumen
Detalles del artículo
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
Citas
ALONSO, B.G.: Modeling discharge and sediment yield for extreme events in Western Cuba, ETH, Zurich, Master of Advanced Studies in Sustainable Water Resources (MAS-SWR), Switzerland, 2015.
ALONSO, B.G.R.: Estimación del riesgo de erosión hídrica en la subcuenca V Aniversario del río Cuyaguateje, Universidad Agraria de La Habana, Tesis (en opción al grado científico de Master en Ciencias), San José de las Lajas, Mayabeque, Cuba, 102 p., 2008.
ALONSO, B.G.R.: “Predicción probabilística del escurrimiento superficial y la pérdida de sedimento para eventos extremos. Parte II”, Revista Ciencias Técnicas Agropecuarias, 25(4): 4–16, 2016, ISSN: 1010-2760, E-ISSN: 2071-0054, DOI: http://dx.doi.org/10.13140/RG.2.2.26734.61764.
AVILES, A.; SOLERA, A.; PAREDES, J.: “Análisis del rendimiento de sistemas hídricos en desarrollo mediante el acople de modelos estocásticos hidrológicos y optimización de redes de flujo”, Ingenius, (15): 48–57, 2016, ISSN: 1390-650X, DOI: http://dx.doi.org/10.17163/ings.n15.2016.05.
CONSEJO TERRITORIAL DE CUENCAS HIDROGRÁFICAS (CTCH) DE PINAR DEL RÍO: Catálogo de Cuencas Hidrográficas Río Cuyaguateje, Pinar del Río, Cuba, 2000.
CRYER, J.D.; CHAN, K.S.: Time series analysis with applications in R, Ed. Springer, 2nd. ed., USA, 505 p., 2010, ISBN: 978-0-387-75958-6.
D’AMICO, G.; PETRONI, F.; PRATTICO, F.: “Economic performance indicators of wind energy based on wind speed stochastic modeling”, Applied Energy, 154: 290–297, 2015, ISSN: 0306-2619, DOI: http://dx.doi.org/10.1016/j.apenergy.2015.04.124.
DÍAZ, M.A.; GUEVARA, E.: “Modelación estocástica de los caudales medios anuales en la cuenca del rio Santa, Perú”, Revista Ingeniería UC, 23(2), 2016, ISSN: 1316-6832.
ESTRADA, V.; PACHECO, M.R.: “Modelación hidrológica con HEC-HMS en cuencas montañosas de la región oriental de Cuba”, Ingeniería Hidráulica y Ambiental, 33(1): 94-105, 2012, ISSN: 1815–591X.
FRY, L.M.; HUNTER, T.S.; PHANIKUMAR, M.S.; FORTIN, V.; GRONEWOLD, A.D.: “Identifying streamgage networks for maximizing the effectiveness of regional water balance modeling”, Water Resources Research, 49(5): 2689–2700, 2013, ISSN: 0043-1397, DOI: http://dx.doi.org/10.1002/wrcr.20233.
LIANG, H.; ZHUANG, W.: “Stochastic modeling and optimization in a microgrid: A survey”, Energies, 7(4): 2027–2050, 2014, ISSN: 0360-5442, DOI: http://dx.doi.org/10.3390/en7042027.
METCALFE, V.A.; COWPERTWAIT, P.S.: Introductory time series with R, [en línea], Ed. Springer, 1st. ed., 259 p., 2009, ISBN: 978-0-387-88697-8, Disponible en: 10.1007/978-0-387-88698-5.
NIEZGODA, S.R.; KANJARLA, A.K.; BEYERLEIN, I.J.; TOMÉ, C.N.: “Stochastic modeling of twin nucleation in polycrystals: an application in hexagonal close-packed metals”, International journal of plasticity, 56: 119–138, 2014, ISSN: 0749-6419, DOI: http://dx.doi.org/10.1016/j.ijplas.2013.11.005.
RODRÍGUEZ, L.Y.; MARRERO DE LEÓN, N.; GIL URRUTIA, L.: “Modelo lluvia-escurrimiento para la cuenca del río Reno”, Revista Ciencias Técnicas Agropecuarias, 19(2): 31–37, 2010, ISSN: 1010-2760, E-ISSN: 2071-0054.
RODRÍGUEZ, L.Y.; MARRERO, N.: “Simulación hidrológica en dos subcuencas de la cuenca del río Zaza de Cuba”, Ingeniería Hidráulica y Ambiental, 36(2): 109–123, 2015, ISSN: 1680-0338.
SANG, Y.-F.: “A review on the applications of wavelet transform in hydrology time series analysis”, Atmospheric research, 122: 8–15, 2013, ISSN: 0169-8095, DOI: http://dx.doi.org/10.1016/j.atmosres.2012.11.003.
SHUMWAY, R.H.; STOFFER, D.S.: Time series analysis and its applications with R examples, [en línea], Ed. Springer, 3rd. ed., USA, 604 p., 2011, ISBN: 978-1-4419-7864-6, Disponible en: DOI-http://dx.doi.org/10.1007/978-1-4419-7865-3.
SUN, K.; YAN, D.; HONG, T.; GUO, S.: “Stochastic modeling of overtime occupancy and its application in building energy simulation and calibration”, Building and Environment, 79: 1–12, 2014, ISSN: 0360-1323, DOI: http://dx.doi.org/10.1016/j.buildenv.2014.04.030.
TRIVIÑO, A.; ORTIZ, S.: “Metodología para la modelación distribuida de la escorrentía superficial y la delimitación de zonas inundables en ramblas y ríos-rambla mediterráneos”, Investigaciones Geográficas (Esp), (35), 2004, ISSN: 0213-4691.
VALIPOUR, M.; BANIHABIB, M.E.; BEHBAHANI, S.M.R.: “Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir”, Journal of Hydrology, 473(7), 2013, ISSN: 0022-1694, DOI: http://dx.doi.org/10.1016/j.jhydrol.2012.11.017.
WILKS, D.S.: Statistical methods in the atmospheric sciences, Ed. Elsevier, 3rd. ed., vol. 100, 676 p., 2011, ISBN: 978-0-12-385022-5.
WU, C.L.; CHAU, K.-W.: “Prediction of rainfall time series using modular soft computingmethods”, Engineering applications of artificial intelligence, 26(3): 997–1007, 2013, ISSN: 0952-1976, DOI: http://dx.doi.org/10.1016/j.engappai.2012.05.023.