Determination of the Thermal Behavior of a Colombian Hanging Greenhouse Applying CFD Simulation

Edwin Andrés Villagrán-Munar


In Colombia the production of flowers is carried out in different types of greenhouses with a common feature and it is the passive type of climate control. At present, the knowledge on the climatic performance of these structures is scarce. The objective of this work was to evaluate the thermal behavior of a suspension-type chapel greenhouse under diurnal and nocturnal climate conditions under the prevailing meteorological conditions of Bogotá savannah. The evaluation was made by numerical simulations using computational fluid dynamics (CFD) applied to a greenhouse dedicated to the production of rose (Rosa sp.). This methodological approach allowed obtaining the thermal distribution patterns inside the greenhouse. It was found that for the meteorological conditions evaluated, the greenhouse generates inadequate thermal conditions for the crop development during the night period, where the value of the temperature obtained was below the recommended minimum of 15°C. The validation of the CFD model was carried out by comparing the results of the simulations and the temperatures recorded in the real prototype of the greenhouse, obtaining an adequate degree of adjustment between the simulated and measured values and with a similar trend during the daily 24 hours.


computational fluid dynamics; temperature; simulation; diurnal period; nocturnal period


BAEZA, E.J.; PÉREZ-PARRA, J.J.: LÓPEZ, J.C.; MONTERO, J.I. CFD study of the natural ventilation performance of a parral type greenhouse with different numbers of spans and roof vent configurations. Acta Horticulturae 719: 333-338, 2006.

BAXEVANOU, C.; FIDAROS, D.; BARTZANAS, T.; KITTAS, C.; Yearly numerical evaluation of greenhouse cover materials. Computers and Electronics in Agriculture, 149 (1):54-70, 2017.

BOJACÁ, C. R.; GIL, R.; COOMAN, A.; Use of geostatistical and crop growth modelling to assess the variability of greenhouse tomato yield caused by spatial temperature variations. Computers and Electronics in Agriculture, 65(2): 219–227, 2009.

CAMPEN, J. B.; BOT, G. P. A. SE—Structures and Environment: Design of a Low-Energy Dehumidifying System for Greenhouses. Journal of Agricultural Engineering Research, 78(1): 65–73, 2001,, 2004.

CHEN, Q.; Ventilation performance prediction for buildings: A method overview and recent applications. Building and Environment, 44(4): 848–858, 2009.

FLORES-VELÁZQUEZ, J.; VILLARREAL-GUERRERO, F.; Diseño de un sistema de ventilación forzada para un invernadero cenital usando CFD, (2015). Revista Mexicana de Ciencias Agrícolas vol. 6, n.2, pp. 303-316.Disponible en:. ISSN 2007-0934.

FATNASSI, H.; BOULARD, T; PONCET, M. C.; Optimisation of Greenhouse Insect Screening with Computational Fluid Dynamics. Biosystems Engineering, 93(3): 301–312, 2006.

HE, X.; WANG, J.; GUO, S.; ZHANG, J.; WEI, B.; SUN, J.; SHU, S.; Ventilation optimization of solar greenhouse with removable back walls based on CFD. Computers and Electronics in Agriculture, 149 (1): 16-25, 2017.

IGLESIAS, N.; MONTERO, J.I.; MUÑOZ, P.; ANTÓN, A.; Estudio del clima nocturno y el empleo de doble cubierta de techo como alternativa pasiva para aumentar la temperatura nocturna de los invernaderos utilizando un modelo basado en la Mecánica de Fluidos Computacional (CFD). Hort. Argentina, 28, 18–23, 2009.

KATSOULAS, N.; BARTZANAS, T.; BOULARD, T.; MERMIER, M.; KITTAS, C.; Effect of Vent Openings and Insect Screens on Greenhouse Ventilation. Biosystems Engineering, 93(4): 427–436, 2006.

KITTAS, C.; KARAMANIS, M.; KATSOULAS, N; Air temperature regime in a forced ventilated greenhouse with rose crop. Energy and Buildings, 2005, 37(8): 807–812, 2005,

MAJDOUBI, H.; BOULARD, T.; FATNASSI, H.; SENHAJI, A.; ELBAHI, S.; DEMRATI, H.; BOUIRDEN, L.; Canary Greenhouse CFD Nocturnal Climate Simulation. Open Journal of Fluid Dynamics, 6(6): 88–100, 2016.

MINISTERIO DE AGRICULTURA Y DESARROLLO RURAL (MADR). Estadísticas del sector 2017- Cadena sector flores. [Consulta: 21 de abril de 2018].

MOLINA-AIZ, D.; VALERA, D.; PEÑA, A.; GIL, J.; LÓPEZ, A.; A study of natural ventilation in an Almería-type greenhouse with insect screens by means of tri-sonic anemometry. Biosystems Engineering, 104(2): 224–242, 2009.

NORTON, T.; SUN, D.; GRANT, J.; FALLON, R..; DODD, V.; Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: A review. Bioresource Technology, 98(12): 2386–2414, 2007.

PISCIA, D.; MONTERO, J. I.; BAEZA, E.; BAILEY, B.; A CFD greenhouse night-time condensation model. Biosystems Engineering, 111(2): 141–154, 2012.

RESTREPO, F. Manual de manejo de Botrytis cinerea en Rosas. Ediciones ceniflores. Bogota-Colombia. 120 p, 2010.

RICO-GARCÍA, E.; Aerodynamic study of greenhouses using computational fluid dynamics. International Journal of the Physical Sciences, 6(28): 2011.

SATO, S.; PEET, M. M.; GARDNER, R.G.: Formation of parthenocarpic fruit, undeveloped flowers and aborted flowers in tomato under moderately elevated temperatures. Sci. Hortic. 90: 243-254, 2001.

TOMINAGA, Y.; MOCHIDA, A.; YOSHIE, R.; KATAOKA, H.; NOZU, T.; YOSHIKAWA, M.; SHIRASAWA, T.; AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. Journal of Wind Engineering and Industrial Aerodynamics, 96(10–11): 1749–1761. 2008.

VILLAGRÁN, E.; GIL, R.; ACUÑA, J. F.; BOJACÁ, C.; Optimization of ventilation and its effect on the microclimate of a colombian multispan greenhouse. Agronomía colombiana, 30(2): 282-288, 2012. ISSN 0120-9965.

YONG, A.; EL CULTIVO DEL ROSAL Y SU PROPAGACIÓN Cultivos Tropicales, vol. 25, núm. 2, pp. 53-6 Instituto Nacional de Ciencias Agrícolas La Habana, Cuba, ISSN: 0258-5936, 2004.

ZIESLIN, N.; MOR, Y.; Light on roses. Scientia Horticulturae, 1990, vol. 43, p. 1-14.


  • There are currently no refbacks.