Static Pressure Drop across a Bed of Coffee Beans: Finite Element Analysis

Filipe de Oliveira da Silva, Ednilton Andrade Tavares


Several are the post-harvest processes of agricultural products in which a fluid flows through a fixed bed of particles. Therefore, the objective of this work was to model the static pressure drop in a bed filled with coffee beans (Coffea arábica L.) with different water contents, submitted to different airflows. The pressure drop results using the finite element technique were satisfactorily adjusted to the data obtained by a classical method, where the pressure drop along the elevation of the coffee column varied linearly between 158.8 and 455.6 Pa, for the column depths of 0.45 and 0.95 m, respectively. The relative error, by this technique remained below 5 %, for all samples. The distributed resistance had an average of 7,2 x 107 m-2, with an average relative error of 0.3 %, for all treatments considered.


pressure drop; distributed resistance; airflow


AFONSO, A.D.L.: Gradiente de pressão estática em camadas de fruto de café (Coffea arábica L.) com diferentes teores de umidade. Dissertação de Mestrado, [en línea], Universidade Federal de Viçosa, Viçosa, MG, Brasil, 68 p., 1994, Disponible en:, [Consulta: 12 de enero de 2018].

ANSYS: Ansys/Multiphysics Product (Program and Program Documentation), (Versión ANSYS Inc, 2013), Ed. ANSYS, Houston, Texas, USA, 2013.

BEIGI, M.: “Numerical simulation of potato slices drying using a two-dimensional finite element model”, Chemical Industry & Chemical Engineering Quarterly, 23(3): 431-440, 2017, ISSN: 2217-7434, DOI: 10.2298/CICEQ160530057B.

BRANDÃO, F.J.B.; DA SILVA, M.A.P.; SPEROTTO, F.C.S.; JASPER, S.P.; BEZERRA, P.H.S.; BIAGGIONI, M.A.M.: “Variation of static pressure in a crambe (Crambe abyssinica Hochst) grains column”, African Journal of Agricultural Research, 11(1): 16–22, 2016, ISSN: 1991-637X, DOI: 10.5897/AJAR2015.10489.

BROOKER, D.B.; BAKKER-ARKEMA, F.W.; HALL, C.W.: Drying and storage of grains and oilseeds, Ed. Springer Science & Business Media, New York, 450 p., 1992, ISBN: 978-0-442-20515-7.

CHIANG, C.-C.; WU, D.-Y.; KANG, D.-Y.: “Detailed Simulation of Fluid Dynamics and Heat Transfer in Coffee Bean Roaster”, Journal of food process engineering, 40(2): 1-7, 2017, ISSN: 1745-4530, DOI: 10.1111/jfpe.12398.

CORRÊA, P.C.; GUIMARÃES, W.T.; ANDRADE, E.T.: “Resistência ao fluxo de ar em camadas de grãos de feijão afetada pelo teor de impureza”, Revista Brasileira de Armazenamento, 26: 53–59, 2001, ISSN: 0100-3518.

DA SILVA, D.J.; COUTO, S.M.; PEIXOTO, A.B.; DOS SANTOS, A.E.; VIEIRA, S.M.: “Resistência de café em coco e despolpado ao fluxo de ar”, Revista Brasileira de Engenharia Agrícola e Ambiental, 2006, ISSN: 1415-4366, DOI: 10.1590/S1415-43662002000300025.

DE ANDRADE, E.T.; COUTO, S.M.; DE QUEIROZ, D.M.: “Distribuição da pressão estática em uma coluna de canola: análise por elementos finitos”, Revista Brasileira de Engenharia Agrícola e Ambiental, 5(2): 288–295, 2001, ISSN: 1807-1929.

DEVILLA, I.A.; COUTO, S.M.; DE QUEIROZ, D.M.: “Distribuição do fluxo de ar em silos com sistema de aeração&58; análise por elementos finitos Airflow distribution in aerated silos&58; finite element analysis”, Revista Brasileira de Engenharia Agrícola e Ambiental-Agriambi, 9(2): 256–262, 2005, ISSN: 1415-4366, DOI: 10.1590/S1415-43662005000200017.

DILMAC, M.; TARHAN, S.; POLATCI, H.: “Aerodynamic properties of Faba bean (Vicia faba L.) Seeds”, Legume Research-An International Journal, 39(3): 379–384, 2016, ISSN: 0976-0571, DOI: 10.18805/lr.v39i3.10751.

DU, W.; QUAN, N.; LU, P.; XU, J.; WEI, W.; ZHANG, L.: “Experimental and statistical analysis of the void size distribution and pressure drop validations in packed beds”, Chemical Engineering Research and Design, 106: 115–125, 2016, ISSN: 0263-8762, DOI: 10.1016/j.cherd.2015.11.023.

ERGUN, S.: “Fluid flow through packed columns”, Chem. Eng. Prog., 48: 89–94, 1952, ISSN: 0360-7275.

GAO, M.; CHENG, X.; DU, X.: “Simulation of bulk density distribution of wheat in silos by finite element analysis”, Journal of Stored Products Research, 77: 1–8, 2018, ISSN: 0022-474X, DOI: 10.1016/j.jspr.2018.02.003.

GINER, S.A.; DENISIENIA, E.: “Pressure drop through wheat as affected by air velocity, moisture content and fines”, Journal of Agricultural Engineering Research, 63(1): 73–85, 1996, ISSN: 0021-8634, DOI: 10.1006/jaer.1996.0009.

GRATÃO, P.T. da S.; DEVILLA, I.A.; SERVULO, A.C.O.; JESUS, F.F. de; FERREIRA, D. de A.: “Loss of static pressure in a column of quinoa grains”, Revista Brasileira de Engenharia Agrícola e Ambiental, 17(8): 848–854, 2013, ISSN: 1415-4366, DOI: 10.1590/S1415-43662013000800008.

HAQUE, E.; FOSTER, G.H.; CHUNG, D.S.: “Static pressure drop across a bed of corn mixed with fines”, Transactions of the ASAE, 21(5): 997–1000, 1978, ISSN: 2151-0032, DOI: 10.13031/2013.35430.

HORABIK, J.; PARAFINIUK, P.; MOLENDA, M.: “Experiments and discrete element method simulations of distribution of static load of grain bedding at bottom of shallow model silo”, Biosystems Engineering, 149: 60–71, 2016, ISSN: 1537-5110, DOI: 10.1016/j.biosystemseng.2016.06.012.

HUKILL, W.V.; IVES, N.C.: “Radial airflow resistance of grain”, Agricultural Engineering, 36(5): 332–335, 1955, ISSN: 2406-1123.

HUNTER, A.J.: “Pressure difference across an aerated seed bulk for some common duct and store cross-sections”, Journal of Agricultural Engineering Research, 28(5): 437–450, 1983, ISSN: 0021-8634, DOI: 10.1016/0021-8634(83)90135-X.

IQBAL, T.; ECKHOFF, S.R.; SYED, A.F.; NIZAMI, A.-S.; SADEF, Y.: “Airflow resistance of chopped miscanthus on drying platform”, Transactions of the ASABE, 58(2): 487–492, 2015, ISSN: 2151-0032, DOI: 10.13031/trans.58.10827.

KHATCHATOURIAN, O.A.; SAVICKI, D.L.: “Mathematical modelling of airflow in an aerated soya bean store under non-uniform conditions”, Biosystems Engineering, 88(2): 201–211, 2004, ISSN: 1537-5110, DOI: 10.1016/j.biosystemseng.2004.03.001.

KORESE, J.K.; RICHTER, U.; HENSEL, O.: “Airflow Resistance through Bulk Sweet Potato Roots”, Transactions of the ASABE, 59(4): 961–968, 2016, ISSN: 0001-2351, DOI: 10.13031/trans.59.11283.

LEMUS-MONDACA, R.A.; VEGA-GÁLVEZ, A.; ZAMBRA, C.E.; MORAGA, N.O.: “Modeling 3D conjugate heat and mass transfer for turbulent air drying of Chilean papaya in a direct contact dryer”, Heat and Mass Transfer, 53(1): 11–24, 2017, ISSN: 1432-1181, DOI: 10.1007/s00231-016-1799-0.

MOSES, J.A.; CHELLADURAI, V.; JAYAS, D.S.; ALAGUSUNDARAM, K.: “Simulation and Validation of Airflow Pressure Patterns in Hopper-Bottom Bins Filled with Wheat”, Applied engineering in agriculture, 31(2): 303–311, 2015, ISSN: 0883-8542, DOI: 10.13031/aea.31.10738.

MOSES, J.A.; JAYAS, D.S.; ALAGUSUNDARAM, K.: “Simulation and validation of airflow distribution patterns in bins filled with canola”, Journal of Agricultural Engineering, 51(4): 14–20, 2014a, ISSN: 0976-2418.

MOSES, J.A.; JAYAS, D.S.; ALAGUSUNDARAM, K.: “Simulation and validation of airflow pressure patterns for horizontal airflow through bulk canola”, Trends in Biosciences, 7(17): 2385–2391, 2014b, ISSN: 1881-7823.

MOSES, J.A.; JAYAS, D.S.; ALAGUSUNDARAM, K.: “Three-dimensional Airflow Pressure Patterns in Flat-Bottom Bins Filled with Barley for Different Duct Configurations”, Trends in Biosciences, 7(17): 2392–2396, 2014c, ISSN: 1881-7823.

OLATUNDE, G.; ATUNGULU, G.G.; SADAKA, S.: “CFD modeling of air flow distribution in rice bin storage system with different grain mass configurations”, biosystems engineering, 151: 286–297, 2016, ISSN: 1537-5110, DOI: 10.1016/j.biosystemseng.2016.09.007.

SHEDD, C.K.: “Resistance of grains and seeds to air flow”, Agricultural Engineering, 34(9): 616–619, 1953, ISSN: 2406-1123.

TEIXEIRA, D.L.; DE MATOS, A.T.; DE CASTRO MELO, E.: “Resistance to forced airflow through layers of composting organic material”, Waste management, 36: 57–62, 2015, ISSN: 0956-053X, DOI: 0.1016/j.wasman.2014.12.003.

YUE, R.; ZHANG, Q.: “A pore-scale model for predicting resistance of airflow through grain bulks”, En: 2014 Montreal, Quebec Canada July 13–July 16, 2014, Ed. American Society of Agricultural and Biological Engineers, p. 1, 2014, DOI: 10.13031/aim.20141900492, ISBN: 2151-0032.


  • There are currently no refbacks.