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ABSTRACT: Precision agriculture is applied to manage spatial variability in agricultural fields and optimize production. The objective
of this study was to differentiate five commercial cultivars of Saccharum spp. (sugarcane) through computational spectral analysis
methods. The vegetal material samples were collected in experimental areas of the Sugarcane Research Institute, located in the
municipality of Ranchuelo, Villa Clara, Cuba. The commercial cultivars of Saccharum spp. were selected based on their characteristics
and importance in Cuba; ‘Ja60-5’, ‘C10-171’, ‘C90-176’, ‘C1051-73’, and ‘C86-12’ were evaluated. The study focused on the spectral
reflectance properties of the cultivars, using the first derivative method and ten spectral matching measures for analysis. It was identified
that at 526.2 nm, 723.8 nm, and 1,399 nm, there are differences in the spectral characteristics gradients among the cultivars studied.

Precision Agriculture, Sugarcane, Spectral Signature.

RESUMEN: La agricultura de precisión se aplica para gestionar la variabilidad espacial en campos agrícolas y optimizar la
producción. El objetivo del trabajo fue diferenciar cinco cultivares comerciales de caña de azúcar (Saccharum spp.) mediante
métodos computacionales de análisis espectral. Las colectas del material vegetal se realizaron en áreas experimentales del Instituto
de Investigaciones de la Caña de Azúcar, ubicado en el municipio de Ranchuelo, Villa Clara, Cuba. Los cultivares comerciales se
seleccionaron de acuerdo a sus características e importancia en Cuba; se evaluaron ‘Ja60-5’, ‘C10-171’, ‘C90-176’, ‘C1051-73’,
‘C86-12’. El trabajo se centró en el estudio de las propiedades de reflectancia espectral de los cultivares y como métodos de análisis se
utilizó el método de la primera derivada y diez medidas de correspondencia espectral. Se identificó que, a 526,2 nm, 723,8 nm y a 1 399 nm
existen diferencias en los gradientes de las características espectrales entre los cultivares en estudio.

agricultura de precisión, caña de azúcar, firma espectral.

 
 
INTRODUCTION

Sugarcane (Saccharum spp.) is one of the world's major
crops (FAOSTAT, 2023). In Cuba, the sugar sector is an
important part of agro-industrial production and one of
the main sources of income for the country’s economy
(Reyes et al., 2021). Several products are obtained from
sugarcane, such as biofuels, ethanol, fibers, and sugar.

Depending on these products, there are sugarcane cultivars
with specific characteristics. For example, cultivars with
high fiber content and cell walls that break easily, favoring
the production of ethanol from bagasse; cultivars with a
small stem diameter and high fiber content, which increase
the strength of sugarcane for use in windy areas, among
others (Phuphaphud et al., 2019).
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Knowing the real-time distribution of sugarcane cultivars
is essential for improving crop productivity and quality
(Ramírez-Gonzáles et al., 2019). The conventional method
for studying the distribution of these cultivars is based
on the use of traditional soil and topography maps, or on
visual inspection of the field, which is laborious, requires
the transfer of personnel, and, on occasion, the maps may
be outdated, which limits accuracy (Espinoza and Luis,
2020). Precision agriculture (PA) is a technology used to
respond to and recognize spatial variation in a field, thereby
improving the management of agricultural production
processes (Udompetaikul et al., 2021). Remote sensing
techniques using satellite imagery have been widely applied
in various fields of agricultural science. This is because they
allow real-time information to be obtained from a given
region without the need for travel, avoiding costs and also
allowing the creation of more efficient methods for crop
management and monitoring (Kai et al., 2020).

Visible and near-infrared spectroscopy (VIS-NIR)
appears to be a promising alternative due to its ability
to detect signals from most of the main structures
and functional groups of organic compounds (Camargo-
Hernández et al., 2023). This technology allows for
easy, fast, accurate, non-destructive, and economical
analysis of the spatial variability of a crop without
prior sample preparation. In addition, it has the
potential for developing online measurement instruments
(Udompetaikul et al., 2021).

The objective of this work is to differentiate the
commercial cultivars of Saccharum spp. ‘Ja60-5’,
‘C10-171’, ‘C90-176’, ‘C1051-73’, and ‘C86-12’ using
computational methods of spectral analysis.

MATERIALS AND METHODS

Determination of the spectral signatures of five commercial
cultivars of Saccharum spp.

Leaf samples were collected in the morning between
8:00 and 10:00 a.m. in experimental areas of the Villa
Clara Sugarcane Research Institute (INICA VC), located
in the municipality of Ranchuelo, Villa Clara, Cuba.
The prevailing environmental conditions at the time of
collection were sunny, with no rain and some clouds. The
soil type is classified as Salitic Brown, genetic type brown,
subtype soft brown, and genus soft brown carbonate.

Four plots (replicas) planted with commercial sugarcane
cultivars ‘Ja60-5’, ‘C10-171’, ‘C90-176’, ‘C1051-73’, and
‘C86-12’, six months old, were selected for collection.
One plant per cultivar was randomly selected from each
plot. Leaf blades +1 to +7 were collected from each
plant according to the Kuijper system (1915). Commercial
cultivars were selected based on their characteristics and
importance in Cuba. After collection, the samples were
stored at room temperature and hydrated. They were then
transferred to the Spectroscopy Laboratory at Agricultural
Research Center of the Faculty of Agricultural Sciences,
located at Universidad Central “Marta Abreu” de Las Villas.

Determination of original spectral
reflectance characteristics

To obtain the original spectral reflectance characteristics,
a Corona Plus Remote spectrometer from the German
company Carl Zeiss was used. This device uses an artificial
light source produced by a halogen lamp and an optical
system that illuminates the sample at 0° (normal to the
sample) in an almost parallel beam. This equipment
provides spectral reflectance measurements in 422 bands
between 398 and 1,702 nm, with a spectral resolution of
10 nm, thus covering only the visible spectrum (VIS) and
near-infrared (NIR) bands. The surveyed area was circular
with a radius of 2.5 mm, equivalent to 20 mm². The leaf
samples were placed in a linear arrangement in a Petri dish
10 mm deep and 35 mm in diameter, which was placed
under the sensor at the center of the coordination point.
The reflectance spectra were taken over the central area of
the Petri dish, with the sample rotated approximately 30°
between subsequent spectral acquisitions. Five reflectance
spectra were taken from the base, five from the center, and
five from the apex of each leaf collected, for a total of
15 spectra per leaf.

The data obtained with the spectrometer were first
processed by Aspect Plus software, version 1.76 (C)
on Windows, without smoothing. The reflectance
characteristics were limited to the wavelength range
between 432.384 and 1,673.385 nm. In addition, markedly
atypical reflectance characteristics (outliers) were removed,
and to attenuate disturbances in spectral reflectance
characteristics that produced high-frequency reflectance
noise, a finite impulse response (FIR) moving average
(MA) smoothing was used, with a window of five samples
(Sonobe and Hirono, 2022).

Principal component extraction was performed using
the principal component analysis (PCA) method. The
normality of the data was tested using the JB-test, KS-test,
L-test, and AD-test for each wavelength, the results of
which were calculated from the data grouped and filtered
by PCA, with a significance level of 1% (α = 1%),
which is equivalent to a 99% confidence level. Under the
assumption of normality in the data, the averages of the
smoothed reflectance readings were determined for each of
the samples of the different sugarcane cultivars, as well as
their standard deviation. Subsequently, the First Derivative
method was applied.

Comparison of five commercial cultivars of Saccharum
spp. using ten Spectral Matching Measures

Ten Spectral Matching Measures (SMM) were used
as methods of analysis between the cultivars of
Saccharum spp. Classic SMM were used according to
Hong et al. (2018); Drumetz et al. (2019); Borsoi et al.
(2021); Pathak et al. (2023), where ρ_(x) and ρ_y are the
reflectances of the spectra of samples x and y, respectively,
contained in M wavelengths, are defined as follows:
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• the spectral Euclidean distance (SED), given by:

• spectral angle measure (SAM) defined as:

Where ρx·ρyT = i = 1
M ρxiρyi  represents the

domestic product between ρ x y ρ y .

• spectral correlation measure (SCM), defined as:

where ρ x is the average of the values of all elements
of the reference spectrum vector, as is ρ y for the
unknown spectrum.

• spectral information divergence (SID), defined as:

where D x   y  the relative entropy or information
distance of Kullback-Leibler de y with respect to x, a which
is defined as:

Here, pxi  =xi /∑i = 1M ρxi corresponds to a normalized
version of the spectrum x in the i-th spectral band.

• the SID-SAM hybrid between the SID and SAM
methods, called SIDSAM, which is reported to be
a better discriminator than its separate components,
obtained by:

• the Bhattacharyya distance (BhattD), taking into
account that they are p xi = ρ xi /∑i = 1M ρxi y p yi = ρ

yi /∑i = 1M ρyi the normalized versions of the spectra ρ x

y ρ y in the i-th spectral band, is given by:

 SED x,  y =x −   ρy2
= i = 1

M ρxi−   ρyi 2 1/2
(1)

 

 SAM x,  y = cos−1 ρx·ρyTρx22ρy22 (2)

 

 SCM x,  y = i = 1M ρxi − ρ x ρyi − ρ y∑i = 1M ρxi − ρ x 2 ∑i = 1M ρyi − ρ y 2 (3)

 

 SID x,  y = D x   y   + D y   x (4)
 

 D x   y = − ∑i = 1M pxi logpyi−  logpxi (5)
 

 SIDSAM x,  y    = SID x,  y tan SAM x,  y (6)
 

• the Jeffries-Matusita distance (JMD), where the
separability criterion between two classes that are
members of a set of classes C(x, y = 1, 2,..., C, x ≠ y),
based on the JMD, has been defined as:

being BhattD(x,  y) l the Bhattacharyya distance between
classes ρ x y ρ y , given in (7).

In addition, other SMMs were also used, such as the Dice
spectral similarity coefficient (DSSC), the Kumar-Johnson
spectral similarity coefficient (KJSSC), and the hybrid
DSSC-KJSSC (KJDSSC) (Kumar et al., 2021).

• the Dice spectral similarity coefficient (DSSC) is
defined as:

• the Kumar-Johnson spectral similarity coefficient
(KJSSC), given by:

• the KJDSSC hybrid, which is the hybrid option
between KJSSC and DSSC given by:

Finally, a metamerism analysis was performed on
the SMMs.

RESULTS AND DISCUSSION
In the original spectral reflectance characteristics, it was

common for all cultivars to show a noisy band with greater
amplitude fluctuations between 932 and 985 nm, with
similar amplitude for all cultivars. Because the bandwidth
of the spectral bands of the spectrometer used is 10 nm,
much greater than that of other commercial spectrometers,
which is only 1 nm, the degradation of the signal-to-noise
ratio was low.

PCA was used to simplify the handling of the sampled
data; this transformation was orthogonal, meaning that the
principal components are independent of each other and are
organized in such a way that the first captures the greatest
variability present in the data, while each subsequent
component represents progressively less variance. This
allows the most significant characteristics to be identified
by focusing on the highest eigenvalues (Che'Ya et al., 2022).

 BhattD x,  y    = − ln∑i = 1M pxipyi   (7)
 

 JMD x,  y    =   2 1 − e−BℎattD ρx, ρy (8)
 

 DSSC x,  y    =    2∑i = 1M ρxiρyi∑i = 1M ρxi 2  +  ∑i = 1M ρyi 2 (9)

 

 KJSSC x,  y    =   ∑i = 1M ρxi2 − ρyi2 2
2 ρxiρyi 3/2 (10)

 

 KJDSSC x,  y    = KJSSC x,  y tan DSSC x,  y   (11)
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After applying PCA to each of the cultivars, the normality
of the data for each of the samples of each cultivar could
be assumed. Subsequently, the averages of the smoothed
reflectance readings were obtained. These mean values
constitute the characteristic spectral signatures of each
cultivar and differ mainly in the shape of the characteristic.

Figure 1 shows the average spectral signatures of each
cultivar superimposed on a single image, allowing for
a better appreciation of the differences between them.
For the same cultivar, the set of characteristics varies
from one reading to another mainly in amplitude, while
from one cultivar to another, the differences are due
to the shape of the characteristic. This involves the
presence of different gradients between some spectral
bands. The gradient (first derivative) does not depend
on the amplitude of the reflectance characteristics, but
rather on the abrupt changes in amplitude between adjacent
wavelengths in these characteristics. These high-gradient
changes are generally associated with reflectance peaks
characteristic of the constituent elements of the analyzed
cultivar (Che'Ya et al., 2022). Figure 2A shows the result
of calculating the gradients of the characteristics of the
samples of each cultivar, squaring them, averaging them,
and smoothing them with a moving average filter with
a window of five samples and zero-phase finite impulse
response (FIR).
 

Figure 1. Average reflectance characteristics of cultivars ‘Ja60-5’,
‘C10-171’, ‘C90-176’, ‘C1051-73’, ‘C86-12’, where ρ is the
reflectance of the spectra.
 

The characteristics shown in Figure 2 have a similar
trend in terms of the high mean gradient peaks squared
associated with the inflection points of the reflectance
characteristics of each cultivar. However, these peaks are
the key points that denote differences between the cultivars
studied. It is important to note that these differences
are not influenced by external factors, since all plants
of the different cultivars were six months old (which
corresponds to the rapid growth stage of the crop), were
planted in adjacent areas with the same soil and climate
conditions, and the samples were collected on the same day.
Therefore, these high mean gradients squared peaks must

be associated with the morphological and physiological
differences of the cultivars under study. The reflectance
characteristics of plants are due to the properties of
the surface and internal structure of the leaf, as well
as the distribution and concentration of its biochemical
components (Peñuelas and Filella, 1998).

As shown in Figure 2B, at 526.2 nm, all reflectance
characteristics have a gradient peak, of which the highest
gradient is produced by the cultivar ‘Ja60-5’, while the
cultivar ‘C90-176’ produces the lowest gradient transition.
These gradient peaks occur in the VIS region of the
electromagnetic spectrum, which is in the range of
400-700 nm. The peaks in this region are related to the
effect of chlorophylls and carotenoids (Peñuelas and Filella,
1998). When sunlight strikes the leaves, part of it is
absorbed in order to capture energy for photosynthesis.
The energy that is not absorbed is reflected (Segarra
et al., 2020; Singh et al., 2020; Sarić et al., 2022). This
is defined as spectral reflection in the plant and can be
described as the process whereby leaves absorb light
in the visible blue and red range due to the presence
of chlorophyll, leaving the dominant reflection in the
green range of the electromagnetic spectrum (between
494-577 nm) (Aboelghar and Khdery, 2017).

The average gradient peaks at 526.2 nm (green zone)
differ between cultivars, which may be due to differences
in the reflectance of the photosynthetic pigments of each
cultivar. The minimum reflectance values correspond to the
maximum absorption values (Peña et al., 2019). Therefore,
it can be deduced that the lower the reflectance value, the
higher the absorbance value, which is directly proportional
to the light energy used by the plant.

Certain studies have defined wavelengths that are used to
calculate reflectance indices, which are used to determine
the efficiency of the photosynthetic process (Peña et al.,
2019). It can be observed that lower reflectance values
in the green zone of the VIS region correspond to better
photosynthetic efficiency, so there is a negative correlation
between them. The above allows us to infer that the
cultivar ‘C90-176’, having the lowest peak at 526.2 nm,
is the cultivar with the best photosynthetic efficiency. This
corresponds to its characteristics, which, being an energy
cane cultivar, requires more energy for biomass production
(Abril-González et al., 2019).

Of the three areas of high average gradient peaks
squared (526.2 nm, 723.8 nm, and 1,399 nm), the least
representative in terms of the differentiation of the cultivars
under study is the one occurring at 526.2 nm. This may
be because the variability in reflectance between cultivars
in the green region of the spectrum is limited because
the optical properties of chlorophyll dominate the spectral
response. This means that the peaks in this region do not
provide relevant information for discriminating between
cultivars, as they are less sensitive than the other two
regions in the near-infrared region.
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Figure 2C shows the average gradient peaks of the
cultivars under study at the red edge (700-745 nm). The
rate of change in this zone is greater for cultivar ‘C86-12’,
while  cultivar ‘C90-176’ has the lowest gradient in this
band. High reflectance values at the red edge are associated
with chlorophyll content in the leaf (Peñuelas and Filella,
1998). The usefulness of derivative analysis of reflectance
data in this region for vegetation identification has been
highlighted (Thorp and Tian, 2004).

Of the three areas with high mean gradient peaks squared
(526.2 nm, 723.8 nm, and 1,399 nm), the most important
in terms of differentiating the cultivars under study is
the one occurring at 723.8 nm. Although chlorophyll
continues to influence this region (as it does in the
526.2 nm zone), reflectance around 700-745 nm is more
sensitive to morphological and physiological differences
between cultivars (Feng et al., 2013). This is because
as wavelengths approach 700 nm, chlorophyll absorption
decreases dramatically. After this point, the leaves begin
to increase reflectance, marking the beginning of the red
edge, a key feature in plant spectroscopy (Gausman, 1974).
This abrupt change is sensitive to leaf conditions, such
as chlorophyll content or cell structure (Peñuelas and
Filella, 1998), making it very useful for distinguishing
between cultivars.

For this reason, although chlorophyll remains a
determining factor in this region, differences in chlorophyll
content between sugarcane cultivars can generate a more
pronounced contrast around 723 nm. This allows the spectra
to vary more noticeably between cultivars, which is not so
much the case in the 526.2 nm range, where reflectance is
more stabilized by the strong absorption of chlorophyll.

Finally, around 1,400 nm (NIR), all characteristics
produce another zone with gradient peaks, with the
highest gradient occurring in the ‘Ja60-5’ cultivar and
the lowest gradient in the ‘C90-176’ cultivar (Figure 2D).
These average gradient peaks at 1,400 nm are due to
discontinuities between cell walls and intercellular air
spaces in the internal structure of the leaf (Yuan et al.,
2014; Katsoulas et al., 2016). Although this wavelength
is not directly linked to the biochemical processes of
photosynthesis, it has an indirect relationship with them,
especially in C4 plants such as sugarcane. These plants
have developed a specialized mechanism to perform
photosynthesis more efficiently under high light and
temperature conditions. Part of this efficiency comes from
their leaf structure, which optimizes CO2 capture and
reduces photorespiration (Moore and Botha, 2014), which
could be reflected in absorption or reflectance in this region
of the spectrum.

Figure 2. A Average reflectance gradient of the leaves of the cultivars under study, squared and smoothed. B Peaks of average reflectance
gradient of the leaves of the cultivars under study at 526.2 nm. C Peaks of average reflectance gradient of the leaves of the cultivars under
study at the red edge. D Peaks of average reflectance gradient of the leaves of the cultivars under study around 1,400 nm.
 

Differentiation of five commercial cultivars of Saccharum spp. using computational methods of VIS-NIR spectral analysis

5



The air spaces between cells allow for more efficient
transport of CO2 to the cells specialized in photosynthesis
in C4 plants. This characteristic is an advantage that is
exploited in the photosynthetic process, as it is crucial in
the carbohydrate synthesis phase. If reflectance at 1,400 nm
is associated with the proportion of these intercellular
spaces, it could be reflecting structural characteristics that
favor efficient photosynthesis in C4 plants. Although the
absorption of photons that enable chemical synthesis in
photosynthesis itself occurs at visible wavelengths, the
cellular architecture that facilitates this process manifests
itself at NIR wavelengths.

Other authors have described that the NIR region
comprising wavelengths of 1,300-1,400 nm is related to
the interaction of incident energy with the mesophyll
structure of the leaf (de Souza et al., 2020). Sugarcane
is a monocotyledonous plant, and the leaves of this
type of plant have more air spaces within the mesophyll
than dicotyledonous species. Thus, this effect has a
direct influence on the radiation scattering of Saccharum
spp. cultivars. In addition, other mid-gradient peaks
useful for the discrimination of cultivars and species
have been described. For example, when differentiating
between four Brazilian sugarcane cultivars using VIS-NIR
spectroscopy, it was found that all wavelengths contributed
to discriminating between sugarcane cultivars, but the
600-750 nm range was the most relevant (Neto et al.,
2018). Also, when differentiating sugarcane plants from
weeds by the spectral behavior of the leaves, it was
possible to simplify the spectrum into only four bands
of interest (500-550 nm; 650-750 nm; 1,300-1,450 nm; and
1,800-1,900 nm) (de Souza et al., 2020). This indicates
that the bands used in the differentiation may vary, as the
spectral properties of plants depend on their physiological
state, such as the concentration of chlorophyll and other
photosynthetic pigments, the content and internal structure
of the leaves, and the influence of biotic and abiotic stress.

The three high-gradient bands are clearly shown as peaks
with maximum values that form different combinations for
each cultivar, making it possible to create a feature space.
This allows for the characterization of spectral variations,
which makes it possible to identify the significant
wavelengths from which discrimination and classification
strategies can be implemented (Agarla et al., 2021).

The results confirm that, based on the VIS-NIR spectra,
the cultivars show characteristic features that allow them to
be differentiated from one another. In this way, it is possible
to differentiate the presence of the five cultivars in the area
based on the internal structure of the leaf, the variability
in the constituent elements of each plant tissue, and their
concentrations among the cultivars analyzed.

Comparison of five commercial cultivars of Saccharum
spp. using ten spectral matching measures

Table 1 shows the results of the ten SMMs analyzed,
representing the mean value and standard deviation

among all samples of each cultivar, using reflectance
characteristics with an amplitude between 0 and 1. In
the measures that determine correlation (DSSC, SCM),
the maximum values are represented in green, while the
minimum values are represented in red. In the measures
that determine distance (SED, BhattD, JMD), similarity
(KJSSC, KJDSSC), measure (SAM), or divergence (SID,
SIDSAM), the minimum values are represented in green,
while the maximum values are represented in red.

The SED, given by (1), was scaled by 0.5 as it depends
on amplitudes. When it increases, it indicates a greater
Euclidean distance between the spectra, which occurs
between the cultivar ‘Ja60-5’ and the rest of the cultivars,
with the highest value when compared to the cultivar
‘C90-176’. The lowest values for SED were obtained
when comparing cultivars ‘C1051-73’ and ‘C10-171’.
The SAM, given in (2) and converted to degrees (°),
increases when there is greater angular separation between
spectral characteristics, which is obtained between cultivars
‘C86-12’ and ‘C1051-73’, or ‘C90-176’, in that order. This
is not the case for the SAM between cultivars ‘C1051-73’
and ‘C10-171’ or ‘Ja60-5’, in that order. The SCM, given in
(3), when it decreases indicates lower spectral correlation,
which is obtained between cultivars ‘C86-12’ and the
rest of the cultivars; presenting the lowest value with
cultivar ‘C1051-73’; This is not the case between cultivars
‘C1051-73’ and ‘C10-171’, ‘C1051-73’ and ‘Ja60-5’, and
‘C10-171’ and ‘Ja60-5’, where the first case has the highest
spectral correlation. For SED, SAM, and SCM, the standard
deviation values did not exceed the measured values.

On the other hand, the SID, given by (4) and (5) scaled
by 10, when it increases indicates greater divergence
of information between the reflectance spectra, with the
maximum divergences being obtained between cultivar
‘C86-12’ and the rest of the cultivars. The same does not
occur between cultivars ‘C10-171’ and ‘C1051-73’, as the
lowest divergence is obtained between them. The SIDSAM,
given by (6), also indicates greater spectral discrepancy
when its value increases, which is obtained between cultivar
‘C86-12’ and the rest of the cultivars. As with SID, the
smallest difference is obtained between cultivars ‘C10-171’
and ‘C1051-73’; however, the standard deviation in this
case exceeds the mean value of the measurement for most
values. The BhattD, given in (7) and scaled by 10, when its
value increases denote more distance between the spectral
characteristics, with the greatest distance being obtained
between cultivars ‘C86-12’ and ‘C1051-73’. The smallest
distance value was found between cultivars ‘C1051-73’
and ‘C10-171’.

The JMD, given by (8), like the BhattD, when its value
increases, denotes more distant spectra and has a nonlinear
relationship with the BhattD, showing that the greatest
distance values occur between cultivar ‘C86-12’ and the
rest of the cultivars, with ‘C1051-73’ being the greatest of
all. The smallest distance value occurs between cultivars
‘C10-171’ and ‘C1051-73’.
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Table 1. Results of the ten SMMs analyzed, representing the mean value and standard deviation among all samples of each cultivar, using
reluctance characteristics with an amplitude between 0 and 1.

‘Ja60-5’ ‘C10-171’ ‘C90-176’ ‘C1051-73’ ‘C86-12’
SED

‘Ja60-5’ 0,0000±0,0000
‘C10-171’ 0,8775±0,3750 0,0000±0,0000
‘C90-176’ 1,1121±0,2320 0,5751±0,3462 0,0000±0,0000
‘C1051-73’ 0,8114±0,3700 0,4800±0,4132 0,6553±0,4357 0,0000±0,0000
‘C86-12’ 0,9122±0,3076 0,6997±0,3372 0,6097±0,3444 0,5064±0,2046 0,0000±0,0000

SAM
‘Ja60-5’ 0,0000±0,0000

‘C10-171’ 3,7128±1,8715 0,0000±0,0000
‘C90-176’ 5,1013±1,6607 4,8122±1,3868 0,0000±0,0000
‘C1051-73’ 3,4983±1,5855 3,3288±1,5049 5,1397±1,7213 0,0000±0,0000
‘C86-12’ 5,5087±2,5736 4,7847±2,9583 6,0161±2,5451 6,0556±3,4557 0,0000±0,0000

SCM
‘Ja60-5’ 1,0000±0,0000

‘C10-171’ 0,9909±0,0087 1,0000±0,0000
‘C90-176’ 0,9873±0,0088 0,9876±0,0108 1,0000±0,0000
‘C1051-73’ 0,9909±0,0079 0,9911±0,0082 0,9844±0,0148 1,0000±0,0000
‘C86-12’ 0,9781±0,0336 0,9801±0,0399 0,9769±0,0317 0,9691±0,0463 1,0000±0,0000

SID
‘Ja60-5’ 0,0000±0,0000

‘C10-171’ 0,1310±0,1169 0,0000±0,0000
‘C90-176’ 0,2177±0,1730 0,1738±0,0881 0,0000±0,0000
‘C1051-73’ 0,1444±0,1184 0,1254±0,1082 0,2569±0,1395 0,0000±0,0000
‘C86-12’ 0,3295±0,3064 0,2760±0,4364 0,3560±0,2952 0,4884±0,4919 0,0000±0,0000

SIDSAM
‘Ja60-5’ 0,0000±0,0000

‘C10-171’ 0,0119±0,0175 0,0000±0,0000
‘C90-176’ 0,0240±0,0278 0,0160±0,0123 0,0000±0,0000

‘C1051-73’ 0,0115±0,0139 0,0099±0,0121 0,0265±0,0214 0,0000±0,0000
‘C86-12’ 0,0451±0,0762 0,0454±0,1175 0,0499±0,0613 0,0810±0,1347 0,0000±0,0000

DSSC
‘Ja60-5’ 0,0000±0,0000

‘C10-171’ 0,7316±0,0133 0,0000±0,0000
‘C90-176’ 0,7240±0,0107 0,7402±0,0103 0,0000±0,0000
‘C1051-73’ 0,7338±0,0116 0,7417±0,0114 0,7367±0,0139 0,0000±0,0000
‘C86-12’ 0,7318±0,0121 0,7367±0,0104 0,7388±0,0109 0,7426±0,0064 0,0000±0,0000

KJSSC
‘Ja60-5’ 0,0000±0,0000

‘C10-171’ 3,6963±2,2523 0,0000±0,0000
‘C90-176’ 5,4460±3,8620 2,0686±1,5693 0,0000±0,0000
‘C1051-73’ 3,1767±1,9155 1,7244±1,9981 2,8639±2,3213 0,0000±0,0000
‘C86-12’ 4,8575±3,0803 3,0374±3,0098 2,7792±2,3586 3,2666±3,2931 0,0000±0,0000

KJDSSC
‘Ja60-5’ 1,0000±0,0000

‘C10-171’ 3,2709±1,9369 1,0000±0,0000
‘C90-176’ 4,7620±3,2647 1,8627±1,3667 1,0000±0,0000
‘C1051-73’ 2,8283±1,6631 1,5407±1,7439 2,5450±1,9921 1,0000±0,0000
‘C86-12’ 4,3072±2,5909 2,7148±2,6437 2,4937±2,0725 2,9617±2,9057 1,0000±0,0000
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The DSSC, given by (9) and scaled by 0.75, decreases
when the reflectance characteristics are less similar, which
occurs between cultivar ‘Ja60-5’ and the rest of the
cultivars, with the lowest value when compared to cultivar
‘C90-176’. The highest DSSC value is obtained between
cultivars ‘C86-12’ and ‘C1051-73’. The KJSSC, given by
(10) and scaled by 0.1, increases in value when the spectral
characteristics are less similar, with the coefficients
between cultivar ‘Ja60-5’ and the rest of the cultivars being
the highest. In contrast, the cultivar ‘C10-171’ compared to
‘C1051-73’ obtains the lowest KJSSC value. Finally, the
KJDSSC, given by (11), also increases in value when the
spectral characteristics are less similar, with its results
coinciding with those of the KJSSC.

The results of the ten SMMs show as a general pattern
that cultivars ‘Ja60-5’ and ‘C86-12’ are the most different
from the rest. In this sense, the cultivar ‘C86-12’ achieved
the most significant values when compared to ‘C1051-73’;
and the cultivar ‘Ja60-5’ obtained its most representative
values when compared to ‘C90-176’. On the other hand,
cultivars ‘C10-171’ and ‘C1051-73’ are the most similar to
each other.

Only when a cultivar is compared with itself do the values
of distance, similarity, measure, or divergence take on a
value of zero, or the correlations take on a value of one;
otherwise, metamerism would occur. Metamerism is the
effect that occurs when two different spectra produce the
same perception of the sources that reflect those spectra
(Agarla et al., 2021). In this case, metamerism will occur
between two spectral reflectance readings of different
cultivars if the SMMs that determine distance (SED,
BhattD, JMD), similarity (KJSSC, KJDSSC), measurement
(SAM), or divergence (SID, SIDSAM) between them result
in a value of zero, as well as when the SMMs that determine
correlation (DSSC, SCM) result in a value of one.

In the analysis of the SMMs, none of the minimum values
are zero, with SIDSAM producing the values closest to
zero, mainly when comparing cultivar ‘C1051-73’ with
‘C10-171’ (0.0099); however, the SIDSAM values for these

cultivar pairs are also low. On the other hand, the correlation
measures (SCM and DSSC), which take a value of one
when metamerism occurs, or when a species is compared
with itself, obtain their highest value for the SCM when
comparing cultivar ‘C1051-73’ with ‘C10-171’ (0.9911).

Finally, it can be noted that based on the results shown
and after testing the normality of the reflectance values
for the various readings of the same sample, the mean and
standard deviation characteristics of each were determined.
The bundle of these mean characteristics of the cultivars
studied represented their variability. It was identified that,
at 526.2 nm, 723.8 nm, and 1,399 nm, there are differences
in the gradients of the spectral characteristics of the
five cultivars studied. Various SMMs corroborated that
it is possible to discriminate between cultivars without
metamerism occurring. Of these, SED, SAM, and SCM
provide the best results. In addition, these were the three
spectral correspondence measures in which none of the
standard deviation values exceeded the mean values.

Computational spectral analysis methods have been
used to distinguish species and cultivars based on the
assumption that each has certain characteristics that can be
used to differentiate them from others, which are generally
the shape, size, and reflectance of the leaves (Cisternas
et al., 2020). In a similar study, other wavelengths were
identified for the discrimination of commercial cultivars of
Saccharum spp. ranging from 560 to 720 nm (Johnson et al.,
2008). The results indicate that the bands for discriminating
cultivars may vary and should be investigated more closely
to allow for adequate mapping of sugarcane cultivars,
taking into account the area and characteristics of the
cultivars under study.

The spectral signature of each cultivar has a different
graphical curve depending on its specific characteristics.
Therefore, a spectral library can be used to compare the
reflectance of sugarcane cultivars in a field and estimate
their frequency; in addition, this library can be used
to discriminate and identify the location of the plant
(Kai et al., 2020).

BhattD

‘Ja60-5’ 0,0000±0,0000

‘C10-171’ 0,0158±0,0143 0,0000±0,0000

‘C90-176’ 0,0266±0,0209 0,0211±0,0106 0,0000±0,0000

‘C1051-73’ 0,0174±0,0142 0,0152±0,0131 0,0313±0,0168 0,0000±0,0000

‘C86-12’ 0,0401±0,0374 0,0334±0,0520 0,0433±0,0358 0,0589±0,0591 0,0000±0,0000

JMD

‘Ja60-5’ 0,0000±0,0000

‘C10-171’ 0,0313±0,0279 0,0000±0,0000

‘C90-176’ 0,0520±0,0401 0,0417±0,0207 0,0000±0,0000

‘C1051-73’ 0,0343±0,0277 0,0301±0,0257 0,0614±0,0324 0,0000±0,0000

‘C86-12’ 0,0774±0,0690 0,0632±0,0933 0,0836±0,0673 0,1113±0,1061 0,0000±0,0000
Note: In measures that determine correlation (DSSC, SCM), maximum values are represented in green, while minimum values are represented in red. In
measures that determine distance (SED, BhattD, JMD), similarity (KJSSC, KJDSSC), measure (SAM), or divergence (SID, SIDSAM), minimum values
are represented in green, while maximum values are represented in red.
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CONCLUSIONS

• It is possible to determine the spectral signatures of
commercial cultivars of Saccharum spp., ‘Ja60-5’,
‘C10-171’, ‘C90-176’, 'C1051-73', ‘C86-12’, at
526.2 nm, 723.8 nm, and 1,399 nm, where at a
reflectance wavelength of 526.2 nm, 723.8 nm, and
1,399 nm, there are differences in the gradients of
their spectral characteristics.

• The ten spectral correspondence measurements allow
commercial cultivars of Saccharum spp. to be
differentiated without metamerism occurring.
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