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ABSTRACT: Among the types of plant seed priming, hydropriming stands out with proven benefits in germination properties and is
essential for standardizing germination in rice.The objective was to evaluate the daily dynamics of hydroconditioned germinated seeds
of rice cultivars INCA P-5 and IACuba-41 (Oryza sativa L.) using a simple linear regression model. In January 2024, in Río Cauto,
Granma, Cuba, the experiment was conducted with 200 rice seeds (100 per cultivar: INCA LP-5 and IACuba-41). The seeds, selected
without defects and with moisture adjusted to 9-10%, were imbibed for 72 hours with irrigation water, dried for 48 hours in the shade,
and sown in trays with local Vertisol soil. The number of germinated seeds was evaluated daily for 14 days. A simple linear regression
model was applied (days as independent variable, germination as dependent) using ordinary least squares, with the slope (a), intercept
(b) and their bootstrap confidence intervals with 1,999 repetitions and 95,0 percentile. Heteroscedasticity, autocorrelation of residuals,
predicted values and their standard errors were also determined. The results confirm that the germinated seeds per day in both cultivars
do not fit a linear regression model with asymmetric stages of dormancy breaking, germination peak and subsequent decline, with a slight
lower dispersion or a more concentrated germination of the INCA LP-5 cultivar compared to IACuba-41

Hydropriming, germination, rice, seeds, cultivars, linear regression.

RESUMEN: Entre los tipos de acondicionamiento de semillas de plantas se encuentra el hidroacondicionamiento con beneficios
demostrados en las propiedades germinativas, e imprescindible para uniformar la germinación en arroz. El objetivo consistió en evaluar
la dinámica diaria de semillas hidroacondicionadas germinadas de los cultivares de arroz INCA P-5 e IACuba-41 (Oryza sativa L.)
mediante un modelo de regresión lineal simple. En enero de 2024, en Río Cauto, Granma, Cuba, se realizó el experimento con
200 semillas de arroz (100 por cultivar: INCA LP-5 e IACuba-41). Las semillas, seleccionadas sin defectos y con humedad ajustada al
9-10%, se imbibieron durante 72 h con agua de riego, se secaron 48 h a la sombra y se sembraron en bandejas con suelo Vertisol propio de
la zona. Se evaluó la cantidad de semillas germinadas diarias durante 14 días. Se aplicó un modelo de regresión lineal simple (días como
variable independiente, germinación como dependiente) mediante mínimos cuadrados ordinarios, con la pendiente (a), la ordenada al
origen (b) y sus intervalos de confianza por bootstrap con 1 999 repeticiones y percentil 95%. Se determinó además la heterocedasticidad,
autocorrelación de los residuos, valores predichos y sus errores estándar. Los resultados confirman que las semillas germinadas por días
en ambos cultivares no se ajusta a un modelo de regresión lineal con etapas asimétricas de ruptura de la latencia, pico germinativo y
posterior descenso, con una ligera dispersión menor o una germinación más concentrada del cultivar INCA LP-5 respecto a IACuba-41.

Hidroacondicionamiento, germinación, arroz, semillas, cultivares, regresión lineal.
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INTRODUCTION

Hydropriming, or hydroconditioning in English, is a type
of seed conditioning that transforms germination and initial
establishment in plant species such as rice (Oryza sativa L.),
sunflower (Helianthus annuus L.), lupin (Lupinus albus L.),
and cotton (Gossypium hirsutum L.). It involves hydrating
the seed in a controlled manner, which activates metabolism
without causing radicle emergence. Mondo  et al. (2016)
demonstrated that this technique increases germination
and vigor of upland rice without altering the cycle or
grain yield, making it useful in agricultural systems under
environmental pressure.

Hydropriming activates physiological, biochemical, and
molecular networks that explain its favorable effect.
Choi  et al. (2024) observed that, in rice, this treatment
stimulates plumule and radicle elongation, while also
increasing the activity of antioxidant enzymes that reduce
oxidative stress under water deficit.

Catiempo  et al. (2024) used transcriptomic analysis
in sunflower seeds and found that genes encoding
cell expansion are key to improved germination after
hydroconditioning. Priming strengthens tolerance to abiotic
stresses. Khalequzzaman  et al. (2023) observed that, in
cotton, the treatment increased germination, yield, and
water productivity under drought. Płażek  et al. (2018)
demonstrated that the combination of hydroconditioning
with smokewater favored lupin (Lupinus angustifolius L.)
germination at low temperatures, a valuable result for cold
regions. Zhang  et al. (2024) add that variables such as
temperature and humidity regulate the germination of wild
rice (Oryza rufipogon Griff.), and conditioning allows for
fine-tuning these responses.

Simple linear regression models germination by
linking elapsed days with the percentage of germinated
seeds, allowing for estimating rates and assessing
uniformity. Bewley et al. (2013) used this technique
with time-transformed (arcsine) data, after validating the
independence of residues and calculating germination
rates in alfalfa (Medicago sativa L.) and lettuce (Lactuca
sativa L.) under controlled conditions.

However, there is a shortage of studies that use the
dynamics of germinated seeds over time as a discrete
quantitative variable, as opposed to the prevailing trend
of evaluating germination parameters using calculated
percentages and rates. The objective of this research
was to evaluate the daily dynamics of germinated
hydroconditioned seeds of the rice cultivars INCA P-5 and
IACuba-41 (Oryza sativa L.) using a simple linear
regression model.

MATERIALS AND METHODS
The experiment was conducted in the municipality of Río

Cauto, Granma province, in January 2024. Two hundred
rice seeds (Oryza sativa L.) were used, corresponding
to the Cuban cultivars INCA LP-5 and IACuba-41,

with 100 units per cultivar. These cultivars emerged from
the Cuban rice breeding program and are genetically
uniform and have a registered category. They were
obtained from the "La Gavina" Seed Unit, belonging to
the "Fernando Echenique" Agroindustrial Grain Company
in Granma, Cuba.

Seeds without visible defects, empty grains, insect
damage, or malformations were selected. The moisture
content was adjusted to a range of 9 to 10%, in accordance
with international regulations (ISTA, 2022).

The seeds were sown in aluminum trays measuring 5 cm
high, 20 cm wide, and 35 cm long. The trays were filled with
Vertisol soil (Hernández et al., 2015).

Before sowing, the seeds were soaked in water from the
irrigation canal used to flood the rice fields in that area
for 72 hours. This is the usual practice in these productive
areas, to ensure the results were as accurate as possible.
This was not a limitation because the germination rate in the
experiment for both cultivars exceeded 95.0%. After this
time, the seeds were placed in the shade in an aerated area
for 48 hours. They were then sown on the soil surface of
the trays, and the soil was moistened with water without
causing waterlogging. Each seed was sown in the trays
in rows spaced three centimeters apart, with a 10 cm
separation between rows.

The trays remained under ambient conditions in January
2024. The recorded temperatures were a minimum of
25°C, an average of 27°C, and a maximum of 29°C.
The photoperiod was 12 hours, and the relative humidity
was 80%. The number of germinated seeds per day was
evaluated for 14 days, from sowing to day 14. Germination
was considered when the radicle emerged (>2 mm).

A simple linear regression model was fitted to the
data (days as the independent variable, germination as
the dependent variable) using ordinary least squares.
The slope (a), the intercept (b), and their confidence
intervals were obtained by bootstrap resampling and the
95.0% percentile. The significance of the coefficients was
verified with Student's t test and heteroscedasticity with
the Breusch-Pagan test. Autocorrelation of the residuals
was estimated using the Durbin-Watson statistic. The
strength of the association was measured with the product-
moment correlation coefficient (r) and the proportion of
explained variance or adjusted coefficient of determination
(adjusted R²). The p-value of the linear regression model
was also determined by Fisher and by bootstrap with
9,999 permutations at 95.0% confidence interval.

For both cultivars (INCA LP-5 and IACuba-41), the
residual (observed value - value predicted by the fitted
line) and its standard error of prediction were calculated
for each day. The simple linear regression equation
Ŷ = b₀ + b₁X was used. The predicted values came from
the model, while the residuals arose from the difference
between observed and predicted values. Likewise, the
standard errors of the predicted values were estimated to
assess the model's accuracy. The autocorrelation function
of the residuals was analyzed using an autocorrelation
function plot to determine the independence of the errors.
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The residuals and their standard errors were plotted against
the number of days elapsed to inspect homoscedasticity and
the model's adequacy.

The probability of germinating seeds over time,
estimated by Kaplan-Meier, log-rank, and Wilcoxon
for survival analysis using nonparametric methods, was
also determined for germination times T25, T50, and
T75 (number of days required for 25.0, 50.0, and 75.0% of
the total germinated seeds to germinate).

The analyses were performed in R software version
4.5.1 (R Core Team, 2025), with the packages boot for
bootstrap, lmtest for diagnostic tests, car for statistical
support, broom for tabulating results, and survival version
3.7-0 (Therneau, 2024) for survival analysis.

RESULTS AND DISCUSSION
The purpose of interpreting Table 1 is to compare the

INCA LP-5 and IACuba-41 cultivars based on the simple
linear regression parameters and their agronomic relevance.
 
Table 1. Statistical parameters of the linear regression: days vs.
germination. *** p < 0.001 for both cultivars

Variable INCA LP-5 IACuba-41
Pendiente (a) 0.369 ± 0.319 0.367 ± 0.337
IC 95 % Pendiente -0.117 - 1.213 -0.108 - 1.284
Intercepto (b) 1.171 ± 2.443 1.114 ± 2.581
IC 95 % Intercepto -2.005 - 5.529 -2.281 - 5.277
Correlación r 0.317 0.300
R² ajustado 0.025 0.014
Error estándar 4.82 5.09
Durbin-Watson 0.473*** 0.437***
Breusch-Pagan (p) 0.132 0.081
p Fisher modelo 0.270 0.265
p Bootstrap modelo 0.298 0.292
 

The slope (a), which indicates the daily change in
germination, is 0.369 ± 0.319 for INCA LP-5 and
0.367 ± 0.337 for IACuba-41, showing similar rates
between both cultivars. The standard error, slightly
higher in IACuba-41, suggests greater variability due
to a wider dispersion in its data. The 95% confidence
intervals (-0.117 to 1.213 for INCA LP-5; -0.108 to
1.284 for IACuba-41) include zero, indicating the absence
of a significant linear relationship. The similarity in
germination rates favors planting planning and ensures
uniform rice emergence, which is key to crop homogeneity.
However, it is recommended to validate these results
under various soil and climate conditions. The intercept,
1.171 ± 2.443 for INCA LP-5 and 1.114 ± 2.581 for
IACuba-41, reflects high uncertainty and overestimates
initial germination, which should be zero. The confidence
intervals (-2.005 to 5.529 for INCA LP-5; -2.281 to
5.277 for IACuba-41) include zero, confirming low
precision. This overestimation highlights a limitation of
the linear model, especially at the beginning of the process.

The Pearson correlation (0.317 for INCA LP-5; 0.300 for
IACuba-41) indicates a weak relationship between days
and germination, slightly stronger in INCA LP-5, although
not practically relevant. The adjusted R² (0.025 for INCA
LP-5; 0.014 for IACuba-41) shows that the model explains
only 2.5% and 1.4% of the variability, characteristic of a
poor fit. The standard error (4.82 for INCA LP-5; 5.09 for
IACuba-41) indicates greater dispersion in IACuba-41 and
lower predictive accuracy.

The Durbin-Watson statistic (0.473 for INCA LP-5;
0.437 for IACuba-41, p < 0.001) reveals positive
autocorrelation in the residuals, violating the independence
assumption. This indicates that the model does not
capture the temporal structure of the data, with a
systematic dependence between consecutive observations,
more pronounced in IACuba-41. The Breusch-Pagan test
(p = 0.132 for INCA LP-5; p = 0.081 for IACuba-41), being
non-significant, indicates the presence of homoscedasticity
in the residuals in both cultivars.

The autocorrelation and low adjusted R² reinforce
the inadequacy of the linear model, which does not
represent the true kinetics of germination. Nonlinear or
time-series approaches would allow for better modeling of
the dependence between successive observations, offering
greater precision for both cultivars. Residual analysis
(Tables 2 and 3) identifies four distinctive phases in
the germination dynamics of both cultivars: dormancy,
exponential, deceleration, and plateau. These stages reflect
patterns of overestimation and underestimation of the
linear model, linked to key physiological processes. Their
examination facilitates understanding of the differences
between INCA LP-5 and IACuba-41, in addition to
highlighting the limitations of linear fitting in describing
rice germination.

The p-value for the linear regression model, calculated
using Fisher's F statistic and bootstrapping for both
cultivars, was greater than 0.05; therefore, the model is
not statistically significant. This indicates that there is
insufficient evidence to affirm that the number of seeds
germinated per day follows a linear relationship.
 
Table 2. Observed, predicted and residual values for INCA LP-5

Days Seeds
Germinated

Predicted
Value Residual

Standard
Error of

Predicted
Value

0 0 2.343 -2.343 4.885
1 0 3.081 -3.081 4.355
2 0 3.820 -3.820 3.859
3 0 4.558 -4.558 3.410
4 0 5.297 -5.297 3.030
5 2 6.035 -4.035 2.747
6 8 6.774 1.226 2.594
7 26 7.512 18.488 2.594
8 24 8.250 15.750 2.747
9 20 8.989 11.011 3.030
10 14 9.728 4.273 3.410
11 6 10.466 -4.466 3.8587
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Residual analysis reveals a nonlinear pattern that can be
grouped into phases of the germination process.

Dormancy-breaking phase (days 0-4): overestimation
and differences in the magnitude of the initial delay

During the first five days of sampling, both cultivars
exhibit increasing negative residuals. This indicates a
systematic overestimation by the linear model. The
cumulative magnitude of the error differs: INCA
LP-5 accumulates 15.98 units on days 0-4, while
IACuba-41 reaches 18.48 units.

This greater magnitude in IACuba-41 suggests a
more pronounced initial delay, possibly due to a link
with persistent residual dormancy or a slower initial
imbibition rate, implying that IACuba-41 would require
greater degree-days to surpass the physiological threshold
for germination.

Exponential phase (days 5-8): amplitude and peak
of underestimation

Between days 5 and 8, both cultivars move to positive
residuals. This reflects the model's underestimation at the
stage of maximum germination speed. The dynamics differ
qualitatively: INCA LP-5 reaches its maximum positive
residual on day 7 (18.49%), while IACuba-41 does so on
day 8 (19.90%).

This lag indicates that IACuba-41 has a germination
progression curve shifted to the right. The accumulation
of positive residues in IACuba-41 is 49.66 units versus
35.27 in INCA LP-5, indicating a steeper germination rate.

Deceleration phase and loss of viability (days 9-13)

From day 9 onwards, both cultivars show a reduction
in positive residues. INCA LP-5 changes sign on day
11 (-4.47), while IACuba-41 does so on day 10 (-8.30) and
reaches an extreme negative residual on day 13 (-11.77).
This greater amplitude in IACuba-41 (accumulated
-31.11 units vs. -4.47 in INCA LP-5) indicates a more abrupt

deceleration and more rapid loss of viability, indicating
that IACuba-41 has a germination amplitude that is less
concentrated over time.

Predictive Accuracy and Residual Heterogeneity

The standard error of the residuals is greater
in IACuba-41 (range 2.74-5.16) than in INCA
LP-5 (2.59-4.89). This greater dispersion reflects
greater residual heterogeneity in IACuba-41, attributable
to intra-seed biological variability or sensitivity to
environmental microvariations.

From a statistical perspective, the wider confidence
intervals for the IACuba-41 residuals reinforce the fact
that its germination curve is more difficult to predict with
a simple linear model. Although both cultivars challenge
the validity of the linear model, there are nuances that
allow us to distinguish their physiological behavior. INCA
LP-5 exhibits earlier and more stable germination, with
a lower residue range and superior fit. This makes it
more robust under marginal conditions or with intensive
agronomic management.

IACuba-41 shows delayed germination but is explosive
once initiated, with an abrupt plateau and high residual
variability. These characteristics would make it more
suitable for homogeneous and stable environments where
concentrated emergence is a competitive advantage. The
graph shows the residuals (Fig. 1a) of the model (y-axis)
according to the number of days elapsed (x-axis), with error
bars reflecting the standard errors of the predictions. From
a statistical perspective, this allows for assessing violations
of the assumptions of linearity (systematic patterns in
residues), homoscedasticity (constant variance, indicated
by similar error bars), and independence (temporal
clustering). The red line at y=0 serves as a reference
to verify whether the residuals are randomly distributed,
which would suggest an adequate model fit.

In IACuba-41, the residuals show a curvilinear pattern:
negative on days 0-4 (<-10), positive on days 8-9 (>15),
and negative on days 11-13 (<-10), indicating nonlinear
dynamics. The linear model underestimates early and
late germination but overestimates the intermediate
phase. The error bars, wider at the extremes, confirm
heteroscedasticity, reflecting biological variability in
seedling emergence, influenced by imbibition or reserve
depletion. The linear model does not capture the nonlinear
kinetics of this cultivar adapted to tropical conditions.

IACuba-41 presents larger residuals (>19 vs. >18 in
INCA LP-5) and wider error bars (SE ≈5.16 vs. ≈4.89),
indicating greater variability and lower predictive accuracy.
The autocorrelation is more pronounced in IACuba-41,
suggesting stronger temporal dependencies.

In INCA LP-5 (Fig. 2a), the residuals are negative
on days 0-5 (≈-5), positive on days 7-9 (>15), and
negative on days 11-13 (<-10), with less pronounced
curvature. Heteroskedasticity indicates lower accuracy at
the extremes, with initial and late underestimation and
central overestimation.

Table 3. Observed, predicted, and residual values for IACuba-41

Days Seeds
Germinated

Predicted
Value Residual

Standard
Error of

Predicted
Value

0 0 2.229 -2.229 5.162
1 0 2.963 -2.963 4.603
2 0 3.697 -3.697 4.077
3 0 4.431 -4.431 3.602
4 0 5.165 -5.165 3.199
5 2 5.900 -3.900 2.902
6 8 6.633 1.367 2.741
7 18 7.367 10.633 2.741
8 28 8.101 19.900 2.902
9 26 8.835 17.165 3.199
10 14 9.569 4.431 3.602
11 2 10.303 -8.303 4.077
12 0 11.037 -11.037 4.603
13 0 11.771 -11.771 5.162

 

Cano-Llorente et al.,  Rev. Cie. Téc. Agr., Vol. 34, January-December 2025, Cu-ID: https://cu-id.com/2177/v34e30

4

https://cu-id.com/2177/v34e30


The autocorrelation plot (Fig. 1b) shows the serial
correlation of residuals, with values between -1 and 1.
The x-axis represents the lags, and the y-axis represents
the autocorrelation function. Dashed blue lines mark
significance thresholds (±2/√n, n=14).

Autocorrelation assesses serial dependencies, where
bars exceeding thresholds violate error independence,
increasing the variance of estimators. In germinal data,
this reflects inherent temporal dependencies.

In IACuba-41, the autocorrelation at lag 1 (≈0.6) is
significant and declines at higher lags, indicating an AR(1)
process. An AR(1) process (autoregressive of order 1) is
a statistical model in which the value of a variable at a
given time depends linearly on its value at the immediately
preceding time, plus a random error term. This implies that
the residuals are not completely random, but rather have a
temporal structure where each residual is influenced by the
previous one, and suggests carryover effects, such as timing
of emergence or environmental factors like temperature.

The rapid decay implies that the linear model does not
capture the temporal structure. Models with autoregressive
errors or GAM could improve the fit of nonlinearities.

In INCA LP-5 (Fig. 2b), the autocorrelation at lag
1 (≈0.5-0.6) is significant but less intense, with decay at
later lags, and suggests less serial dependence. This violates
independence and affects tests such as Durbin-Watson
(≈0.4-0.5). This may be attributed to cumulative effects,
such as inhibitor release or metabolite accumulation.
INCA LP-5 shows greater genetic evenness or lower
environmental sensitivity.

IACuba-41 presents larger central positive residuals,
although it presents greater uncertainty in the early and late
phases. This characteristic could imply greater vulnerability
to abiotic stresses, such as initial drought. INCA LP-5, on
the other hand, shows more gradual transitions, indicating
greater germination stability, which is useful in diversified
cropping systems.

Both rice cultivars show similar violations of the
linear model assumptions: nonlinearity (curvilinear
residuals), heteroskedasticity (wider errors at extremes),
and positive autocorrelation, low explanatory power
(adjusted R² ≤ 0.025), confidence intervals that include
zero, and significant residual autocorrelation (Durbin-
Watson < 0.5) coincide with problems described
by Sileshi (2012) and Carvalho et al. (2018),

Figure 1. Residuals with their standard errors (Figure 1a) and autocorrelation (Figure 1b), cultivar IACuba-41.
 

Figure 2. Residuals with their standard errors (Figure 2a) and autocorrelation (Figure 2b), INCA LP-5 cultivar.
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who warn about underestimation of the standard error and
inflated significance by ignoring the binomial nature and
temporal correlation of the data.

This limitation was highlighted in the study by
Scott et al. (1984) with Solanum lycopersicum L., where
it was shown that the estimation of mean germination time
and conditional probability of germination (risk) is biased
if survival models or cumulative distribution functions are
not incorporated.

Another problem arises when germination data
are expressed cumulatively, a situation that breaks
the independence of observations. In this context,
Hay et al. (2014) recommend analyzing proportions using
probit or logit models (binomial GLM). These authors
also warn that the arcsine transformation, common in
studies on germination percentage, does not correct for
heteroskedasticity and can even exacerbate the lack of
normality, as demonstrated by Ahrens et al. (1990).

The variability in the proportion of germinated seeds
is not always constant across genotypes. In the cultivar
IACuba-41, marginal heteroskedasticity was observed
(p = 0.081), indicating that the variance depends on the
level of the mean. This behavior has been described by
Scott et al. (1984) and Sileshi (2012), who showed that
the variance follows a quadratic function with respect to
the mean.

Given this limitation, the use of more flexible models is
recommended. Generalized linear mixed models (GLMM)
and beta-binomial regressions allow for the incorporation
of associated random effects. This feature improves the
representation of the hierarchical structure of the data.
Bolker et al. (2009) and McNair et al. (2012) highlight that
these approaches offer more reliable inferences when the
variance is not constant.

For other regression analysis alternatives, Jiang et al.
(2020) applied stepwise regression analysis to select
minimum soil quality indicators in deltaic wetlands, with
a high correlation coefficient of determination (R² > 0.85).
This method allows for optimizing resources for a data set
without sacrificing precision and is applicable to variables
and parameters related to germination.

When comparing cultivars, it is essential to consider that
seed physiological parameters such as base temperature
(Tb) and base water potential (ψb) vary between genotypes.
Bradford (2009) and Ali and Ullah (2022) recommend
estimating them simultaneously using hydrothermal
models. This procedure avoids biases that arise from
assuming fixed values or fitting linear slopes separately.

The distribution of germination times rarely conforms to
the normal model, especially in the presence of censoring
or skewness. Watt et al. (2011) and Mesgaran et al. (2013)
have shown that these alternatives reduce prediction error.

An additional robust approach is the use of conditional
survival models. Scott et al. (1984) emphasize that they
allow analysis of time to germination without assuming
normality. This method has been validated in Solanum
lycopersicum L. by Scott and Jones (1982).

The application of simple linear regression in INCA
LP-5 and IACuba-41 reproduces the systematic errors
identified for more than four decades in the specialized
literature: violation of independence, heteroskedasticity,
and underestimation of error. The transition to probit/
logit, hydrothermal, and survival models is not only
advisable but necessary to obtain valid estimates and
reliable comparisons between cultivars.

In both cases, it is advisable to move toward
nonlinear models for germination curves or incorporate
autoregressive terms, such as ARIMA models, to improve
the fit and inferences about seed viability and potential
yield. Future research could integrate environmental
variables to unravel these dynamics and optimize planting
practices in the context of tropical agronomy and the
pressures of climate change.

Although germination slopes are very similar between
cultivars (0.369 vs. 0.367), IACuba-41 reached a higher
peak (14 vs. 13 seedlings on day 8). This difference could
be attributed to higher initial viability or lower dormancy
levels. These traits are relevant in breeding programs, where
establishment is The rapid and uniformity of the crop
directly impacts final yield.

In recent years, conditioning has evolved beyond its
traditional use. Kharb et al. (2023) demonstrated that
this technique, which includes the inclusion of iron, not
only improves germination and growth in rice but also
increases the iron content in seedlings. This evidence opens
a promising avenue for crop biofortification, especially in
regions with nutritional deficiencies.

However, this technique is not without risks.
Ren et al. (2023) warn that certain seed conditioning
methods can accelerate the deterioration of rice seeds.
This effect is linked to an increase in the production
of reactive oxygen species, elevated respiration, and
premature starch degradation. These processes compromise
long-term viability, requiring careful protocol design.

Environmental contaminants represent an emerging
challenge for seed germination. Recent research reveals
that microplastics such as polyethylene, polypropylene,
and polystyrene adversely affect the early development
of rice plants (Iswahyudi et al., 2024) and limit the
effectiveness of conditioning in contaminated soils. Despite
scientific progress, notable limitations remain. The lack
of standardized protocols, including hydration times and
substance concentrations, hampers the comparability and
reproduction of results.

Our understanding of regulatory pathways remains
incomplete. While studies have made progress
in identifying essential genes and metabolites
(Catiempo et al., 2024; Liu et al., 2023), integrating
these elements into functional models requires further
development. Another critical obstacle is the paucity
of information on the long-term effects of conditioning
on grain yield and quality, as most research focuses
exclusively on germination and early growth. The
extensive application of these techniques in commercial
agricultural systems faces logistical and economic barriers.
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Genotypic specificity in conditioning responses restricts its
universal applicability. As Barik et al. (2022) point out,
this variability demands research focused on the genetic
diversity of crops.

On the other hand, Ranmeechai et al. (2022) found that
hydroconditioning significantly improves germination and
vigor in Philippine rice varieties after extended storage
periods. This ability to counteract the effects of aging
enables its use in systems where access to fresh seeds is
limited. Thus, conditioning is consolidated as a strategic
tool, provided that efficacy and preservation of seed quality
are balanced.

Germination modeling using simple regression is an
essential tool. These models make it possible to analyze
responses to variables such as temperature, salinity, and
water stress, in order to optimize agricultural conditions
for rice, sesame, Foeniculum vulgare (Mill.), Vigna
radiata (L.) R. Wilczek, and Allium cepa L. crops. The
characterization of the germination response of Secale
montanum Guss. to different temperatures allowed the
identification of optimal thresholds using nonlinear models
(Ansari et al., 2017).

The analysis of interactions with stressors has been
simplified by simple regression. When evaluating the joint
effect of salinity and water conditioning on Foeniculum
vulgare Miller, Kiani et al. (2013) observed an increase
in tolerance that opens up possibilities for degraded
soils. In an emerging scenario, Kumar and Thakur (2025)
described, using nonlinear regression, the dose-dependent
phytotoxicity of hematite nanoparticles in Vigna radiata
(Linnaeus) Wilczek and Allium cepa Linnaeus, which
projects sustainable uses of nanotechnology.

When data become complex or unbalanced, simple
regression is combined with advanced methods to
overcome its limitations. In rice seedling classification,
Mara et al. (2025) integrated artificial intelligence
and a linear component to refine accuracy, while
Cheng et al. (2022) employed low-field nuclear magnetic
resonance and machine learning, using linear regression
to interpret vigor. Both works suggest a transition toward
hybrid models and non-destructive techniques.

In the genetic and production fields, Sales et al. (2017)
applied linear regression in a genome-wide association
study to locate loci related to cold tolerance in
rice germination in japonica subspecies. Meanwhile,
Sairdama et al. (2025) also used linear regression to identify
factors that influence rice production, such as planted area
and fertilizers, to demonstrate the usefulness of simple
models in large-scale agricultural decisions.

Significant gaps remain. Research using nonlinear
regression, such as that by Ansari et al. (2017),
Pedroso et al. (2019), and Puteh et al. (2010), is
conducted under controlled conditions and requires
validation in real fields. Furthermore, simple regression,
whether linear or nonlinear, requires support such as
machine learning to capture multifactorial interactions,
as noted by Cheng et al. (2022) and Mara et al. (2025).

Integration with omics data is also limited; although
Sales et al. (2017) make progress in genetics, simple models
do not reveal complex regulatory networks.

Studies such as those by Kiani et al. (2013)
assume simple patterns and show sensitivity to extreme
values, suggesting the suitability of robust or Bayesian
approaches. Finally, the lack of standardized protocols and
interspecies validation limits generalization. Overcoming
these gaps will allow simple regression to be used with
greater confidence in precision agriculture and climate
resilience strategies.

The comprehensive review of analytical and graphical
methods for analyzing seed germination data highlights
the need to handle qualitative responses of individuals
and population distributions over time, including censored
data (viable seeds that do not germinate during the trial).
Scott et al. (1984) present this analysis in their article.

Among the analytical methods, simple linear regression
is widely applied for quantitative treatments, as is
the case with germination percentage analysis. Linear
regression after arcsin transformation is used to partition
effects into linear, quadratic, or orthogonal components,
facilitating treatment comparisons. Similarly, it is also used
for germination index and germination rate coefficients
to describe responses to continuous variables such as
temperature, with analysis of covariance to test for
homogeneity of coefficients and detect interactions such as
genotype-temperature (Scott et al., 1984).

The relationship between germination rate (the
reciprocal of time up to a fixed percentage) and
temperature is modeled using simple linear regression.
Covell et al. (1986) extrapolated daily data and analyzed
residuals to ensure independence in legumes such as
chickpea (Cicer arietinum L.) and soybean (Glycine
max (L.) Merr.).

These studies underscore the versatility of simple linear
regressions in capturing daily germination progression,
although they emphasize the need for transformations
and validations to manage variability and meet statistical
assumptions in agricultural contexts.

The results in Figure 3 demonstrate the high germination
percentages achieved, the absence of significant differences
(p > 0.05) between the germination patterns of both
cultivars in the Log-rank (p = 0.939) and Wilcoxon
(p = 0.895) tests, and that the small variations observed
in the germination curves are due to chance and not
to biological differences, water quality, or seed quality
between the genetic materials. This statistical equivalence
is reinforced by the exact coincidence in the germination
times T25, T50, and T75 (8, 9, and 10 days, respectively, for
both cultivars).

However, Mamani et al. (2024) found different
significance values for both nonparametric statistical tests
in germination parameters of Cecropia pachystachya
Trécul and Jacaranda caroba (Vell.) A.H. Gentry.
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CONCLUSIONS
The Cuban rice cultivars INCA LP-5 and

IACuba-41 exhibit similar germination dynamics, with
INCA LP-5 showing lower residual dispersion and greater
stability. However, the linear model does not adequately
represent the process of germinated seeds by days due to
its sigmoidal nature, with asymmetric stages of dormancy
breaking, peak and decline in germination, autocorrelation,
and low explanatory power.
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