Revista Ciencias Técnicas Agropecuarias Vol. 34, January-December 2025, ISSN: 2071-0054
Código QR
Cu-ID: https://cu-id.com/2177/v34e03
REVIEW

Approaches to Efficient Water Management and Use in Rice Cultivation

 

iDCalixto Domínguez-VentoIInstituto de Investigaciones de Ingeniería Agrícola (IAgric), Boyeros, La Habana, Cuba.*✉:calixtodominguez1986@gmail.com

iDEnrique Cisneros-ZayasIInstituto de Investigaciones de Ingeniería Agrícola (IAgric), Boyeros, La Habana, Cuba.

iDJulián Herrera-PueblaIInstituto de Investigaciones de Ingeniería Agrícola (IAgric), Boyeros, La Habana, Cuba.

iDMichel Ruiz-SánchezIIUnidad Científico Tecnológica de Base Los Palacios (UCTB-LP), Los Palacios, Pinar del Río, Cuba.

iDAlexander Miranda-CaballeroIIIInstituto de Investigaciones de Ciencias Agrícolas (INCA), San José de las Lajas, Mayabeque, Cuba.

iDPedro Paneque-RondónIVUniversidad Agraria de La Habana (UNAH), San José de las Lajas, Mayabeque, Cuba.

iDRafael Amado Martin-FernándezIInstituto de Investigaciones de Ingeniería Agrícola (IAgric), Boyeros, La Habana, Cuba.


IInstituto de Investigaciones de Ingeniería Agrícola (IAgric), Boyeros, La Habana, Cuba.

IIUnidad Científico Tecnológica de Base Los Palacios (UCTB-LP), Los Palacios, Pinar del Río, Cuba.

IIIInstituto de Investigaciones de Ciencias Agrícolas (INCA), San José de las Lajas, Mayabeque, Cuba.

IVUniversidad Agraria de La Habana (UNAH), San José de las Lajas, Mayabeque, Cuba.

 

*Author for correspondence: Calixto Domínguez-Vento, e-mail: calixtodominguez1986@gmail.com

Abstract

In the current context of climate change and instability where the availability of water is reduced over the years, the rice sector faces the challenge of making rational use of water, while at the same time needing to mitigate the effects of rice production in the face of a changing climate. Of particular interest in this regard are water-saving irrigation methods and climate-smart agricultural practices such as conservation agriculture that has begun to gain acceptance in rice cultivation. The objective of this work is to review the main approaches for the management and efficient use of water in rice cultivation, reported in the specialized scientific literature.

Keywords: 
Agriculture, Water, Sustainability, Climate Change, Irrigation Management

Received: 05/7/2024; Accepted: 05/12/2024

Calixto Domínguez-Vento. Dr.C., Investigador Auxiliar, Instituto de Investigaciones de Ingeniería Carretera de Fontanar, km 2 1/2, Reparto Abel Santamaría, Boyeros, La Habana, Cuba. Teléf.: (53) (7) 645-1731; 645-1353.

Enrique Cisneros-Zayas. Dr.C., Inv. Titular, Instituto de Investigaciones de Ingeniería Agrícola, Carretera de Fontanar, km 2 1/2, Reparto Abel Santamaría, Boyeros, La Habana, Cuba. Teléf.: (53) (7) 645-1731; 645-1353. e-mail: enrique.cisneros@iagric.minag.gob.cu.

Julián Herrera-Puebla. Dr.C., Investigador Titular, Instituto de Investigaciones de Ingeniería Agrícola, (IAgric), Carretera de Fontanar, km 2 1/2, Reparto Abel Santamaría, Boyeros, La Habana, Cuba. Teléf.: (53) (7) 645-1731; 645-1353. e-mail: julian.herrera@iagric.minag.gob.cu.

Michel Ruiz-Sánchez. Dr.C., Investigador y Profesor Titular, Instituto Nacional de Ciencias Agrícolas. Cuba, San José de las Lajas, Mayabeque, Cuba. e-mail: mich@inca.edu.cu.

Alexander Miranda-Caballero. Dr.C., Investigador y Profesor Titular, Director General Instituto Nacional de Ciencias Agrícolas, San José de las Lajas, Mayabeque, Cuba. e-mail: alex@inca.edu.cu.

Pedro Paneque-Rondón. Dr.C. Profesor e Investigador Titular. Universidad Agraria de La Habana, Centro de Mecanización Agropecuaria, San José de las Lajas, Mayabeque, Cuba. e-mail: paneque@unah.edu.cu.

Rafael Amado Martin-Fernández. Máster en Ciencias, Investigador, Instituto de Investigaciones de Ingeniería Agrícola (IAgric), Boyeros, La Habana, Cuba. e-mail: martinrafael1830@gmail.com.

The authors of this work declare no conflict of interests.

AUTHOR CONTRIBUTIONS: Conceptualization: C. Domínguez. Data curation: C. Domínguez. Formal analysis: C. Domínguez. Investigation: C. Domínguez, E. Cisneros, J. Herrera, M. Ruiz, A. Miranda, P. Paneque, R. Martín. Methodology: C. Domínguez. Supervision: C. Domínguez, Domínguez, E. Cisneros, J. Herrera, M. Ruiz, A. Miranda, P. Paneque, R. Martín, R. Martín. Validation: C. Domínguez, Domínguez, E. Cisneros, J. Herrera, M. Ruiz, A. Miranda, P. Paneque. Writing-original draft: C. Domínguez. Domínguez, E. Cisneros, J. Herrera, M. Ruiz, A. Miranda, P. Paneque. Writing-review & editing: C. Domínguez, E. Cisneros, J. Herrera, P. Paneque.

The mention of trademarks of specific equipment, instruments or materials is for identification purposes, there being no promotional commitment in relation to them, neither by the authors nor by the publisher.

CONTENT

Introduction

 

Rice is the staple food of 75 % of the world's population and one of the most important crops in the world (Vijayakumar et al., 2022aVIJAYAKUMAR, S.; CHOUDHARY, A.K.; DEIVEEGAN, M.; THIRUMALAIKUMAR, R.; KUMAR, R.M.: “Android based mobile application for rice crop management”, Chronicle of Bioresource Management, 6(Mar, 1): 019-024, 2022a.; Gharsallah et al., 2023GHARSALLAH, O.; RIENZNER, M.; MAYER, A.; TKACHENKO, D.; CORSI, S.; VUCITERNA, R.; ROMANI, M.; RICCIARDELLI, A.; CADEI, E.; TREVISAN, M.: “Economic, environmental, and social sustainability of Alternate Wetting and Drying irrigation for rice in northern Italy”, Frontiers in Water, 5: 1213047, 2023, ISSN: 2624-9375, DOI: 10.3389/frwa.2023.1213047.). But in most countries, rice is grown under flooded conditions, which involves the use of large volumes of water and the emission of greenhouse gases (Gharsallah et al., 2023GHARSALLAH, O.; RIENZNER, M.; MAYER, A.; TKACHENKO, D.; CORSI, S.; VUCITERNA, R.; ROMANI, M.; RICCIARDELLI, A.; CADEI, E.; TREVISAN, M.: “Economic, environmental, and social sustainability of Alternate Wetting and Drying irrigation for rice in northern Italy”, Frontiers in Water, 5: 1213047, 2023, ISSN: 2624-9375, DOI: 10.3389/frwa.2023.1213047.; Meriguetti et al., 2023MERIGUETTI-PINTO, V.; BORJA-REIS, A.F.; ABREU, M.L.; REICHARDT, K.; SANTOS, D.; JONG, Q.: “Sustainable irrigation management in tropical lowland rice in Brazil”, Agricultural Water Management, 284: 108345, 2023, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2023.108345.). It is estimated that rice cultivation consumes 43 % of the irrigation water used globally (Majumdar et al., 2023MAJUMDAR, A.; KUMAR, V.D.P.; GIRI, B.; MOULICK, D.; SRIVASTAVA, A.K.; ROYCHOWDHURY, T.; BOSE, S.; JAISWAL, M.K.: “Combined effects of dry-wet irrigation, redox changes and microbial diversity on soil nutrient bioavailability in the rice field”, Soil and Tillage Research, 232: 105752, 2023, ISSN: 0167-1987, DOI: https://doi.org/10.1016/j.still.2023.105752.). However, increasing water scarcity in rice-producing countries is a cause for concern and threatens the sustainability of rice production under irrigated conditions Shukla et al. (2021)SHUKLA, M.K.; SHUKLA, A.K.; SINGH, S.: “Direct Seeded Rice: An Alternative Rice Establishment Method Over Conventional Transplanted Puddled Rice”, Recent Advances in Biology and Medicine, 7(1): 1-6, 2021, ISSN: 2378-654X., por lo que, en las últimas décadas, los investigadores se han enfocado en la búsqueda de nuevos métodos de riego que, which is why, in recent decades, researchers have focused on the search for new irrigation methods that save water without significantly affecting rice production.

In Cuba, rice cultivation has historically depended on the flood irrigation method (which consumes large volumes of water), making it the largest consumer of water in the agricultural sector. In addition, it has established a strong dependence on flooding as a method for weed control. But the current conditions of climate change, the degradation of soils expressed in low contents of organic matter, nitrogen, phosphorus and potassium, the change in climatic patterns (intense precipitation in some periods and prolonged droughts), and the scarcity of resources, they force farmers to implement profitable cultivation methods that contribute to the improvement and conservation of soils and at the same time save water.

In response to these challenges, several cropping systems have been implemented internationally in which fields are not flooded and less irrigation water is used, while reducing the negative effects of rice production on climate change (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.). For example, irrigation alternating periods of flooding and drying Gharsallah et al. (2023)GHARSALLAH, O.; RIENZNER, M.; MAYER, A.; TKACHENKO, D.; CORSI, S.; VUCITERNA, R.; ROMANI, M.; RICCIARDELLI, A.; CADEI, E.; TREVISAN, M.: “Economic, environmental, and social sustainability of Alternate Wetting and Drying irrigation for rice in northern Italy”, Frontiers in Water, 5: 1213047, 2023, ISSN: 2624-9375, DOI: 10.3389/frwa.2023.1213047. and no-till cultivation applying the AC principle Gangopadhyay et al. (2023)GANGOPADHYAY, S.; CHOWDHURI, I.; DAS, N.; PAL, S.C.; MANDAL, S.: “The effects of no-tillage and conventional tillage on greenhouse gas emissions from paddy fields with various rice varieties”, Soil and Tillage Research, 232: 105772, 2023, ISSN: 0167-1987, DOI: https://doi.org/10.1016/j.still.2023.105772., among others. However, each method has its particularities, which may constitute advantages or disadvantages depending on local production conditions, availability of labor and factors such as soil type, field characteristics (topography or leveling) and field dimensions of the farms. The objective of this work is to review the main approaches for the management and efficient use of water in rice cultivation, reported in the specialized scientific literature.

Development of the topic

 

Rice cultivation is currently facing problems such as water scarcity and soil health degradation (Arouna et al., 2023AROUNA, A.; DZOMEKU, I.K.; SHAIBU, A.-G.; NURUDEEN, A.R.: “Water management for sustainable irrigation in rice (Oryza sativa L.) production: A review”, Agronomy, 13(6): 1522, 2023, ISSN: 2073-4395, DOI: https://doi.org/10.3390/agronomy13061522.; Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.) Factors associated with the traditional method of continuously flooding the fields throughout the crop cycle, being the most practiced irrigation strategy worldwide for rice production (Luo et al., 2022LUO, W.; CHEN, M.; KANG, Y.; LI, W.; LI, D.; CUI, Y.; KHAN, S.; LUO, Y.: “Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall”, Agricultural Water Management, 260: 107285, 2022, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2021.107285.; Meriguetti et al., 2023MERIGUETTI-PINTO, V.; BORJA-REIS, A.F.; ABREU, M.L.; REICHARDT, K.; SANTOS, D.; JONG, Q.: “Sustainable irrigation management in tropical lowland rice in Brazil”, Agricultural Water Management, 284: 108345, 2023, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2023.108345.). As well as, traditional tillage based on the use of implements that break and decompose the soil structure, particularly with humid soils (Domínguez et al., 2024DOMÍNGUEZ, V.C.; MIRANDA, C.A.; DÍAZ, L.G.; DOMÍNGUEZ, P.D.; DUARTE, D.C.; RUIZ, S.J.; RODRÍGUEZ, A.: “Properties of a cultivated soil of irrigated rice under conservation agriculture principles”, Net Journal of Agricultural Science, 12(1): 9-16, 2024, DOI: 10.30918/NJAS.121.24.011.). In this context, the application of new cultivation approaches in which fields are not permanently flooded and minimal soil disturbance as part of CA emerge as an important step for the efficient use of water, soil conservation and the environment.

The demand for irrigation water in rice cultivation is influenced, among other factors, by irrigation management practices such as: irrigation methods, irrigation regimes, irrigation scheduling, irrigation technologies, etc.), and practices agronomic aspects such as soil preparation and irrigation scheme patterns (Arouna et al., 2023AROUNA, A.; DZOMEKU, I.K.; SHAIBU, A.-G.; NURUDEEN, A.R.: “Water management for sustainable irrigation in rice (Oryza sativa L.) production: A review”, Agronomy, 13(6): 1522, 2023, ISSN: 2073-4395, DOI: https://doi.org/10.3390/agronomy13061522.). Therefore, the demand for irrigation water can be reduced by adopting irrigation methods that save water and implementing agronomic practices that contribute to the efficient use of water, such as CA. In this sense, Arouna et al. (2023)AROUNA, A.; DZOMEKU, I.K.; SHAIBU, A.-G.; NURUDEEN, A.R.: “Water management for sustainable irrigation in rice (Oryza sativa L.) production: A review”, Agronomy, 13(6): 1522, 2023, ISSN: 2073-4395, DOI: https://doi.org/10.3390/agronomy13061522.. suggest that water-saving technologies for rice cultivation can be classified into three groups: water-saving irrigation systems, water-saving irrigation methods, and water-saving agronomic practices.

Water-saving irrigation methods in rice production

 

The surface irrigation method is the most used in the world (Mubangizi et al., 2023MUBANGIZI, A.; WANYAMA, J.; KIGGUNDU, N.; NAKAWUKA, P.: “Assessing Suitability of Irrigation Scheduling Decision Support Systems for Lowland Rice Farmers in Sub-Saharan Africa-A Review”, Agricultural Sciences, 14(2): 219-239, 2023, DOI: https://doi.org/10.4236/as.2023.142015.; Meriguetti et al., 2023MERIGUETTI-PINTO, V.; BORJA-REIS, A.F.; ABREU, M.L.; REICHARDT, K.; SANTOS, D.; JONG, Q.: “Sustainable irrigation management in tropical lowland rice in Brazil”, Agricultural Water Management, 284: 108345, 2023, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2023.108345.). In this method, surface irrigation, including basin irrigation, edge irrigation and furrow irrigation, is characterized by inefficient irrigation that causes water losses. Sprinkler irrigation and drip irrigation are a better alternative than surface flood irrigation to save irrigation water and increase agronomic water productivity, even with higher agricultural yield (Merza et al., 2023MERZA, N.; ATAB, H.; AL-FATLAWI, Z.; ALSHARIFI, S.: “Effect of irrigation systems on rice productivity.”, SABRAO Journal of Breeding and Genetics, 55(2): 587-597, 2023, DOI: http://doi.org/10.54910/sabrao2023.55.2.30.; Saikumar et al., 2023SAIKUMAR, G.; JINSY, V.; SUMESH, K.: “Agro-economic evaluation of aerobic rice+ legume intercropping system under varying levels of nitrogen.”, The Mysore Journal of Agricultural Sciences, 57(3): 146-152, 2023.).

Modernization of surface irrigation

 

In Cuba, where rice cultivation irrigation systems were designed superficially (engineered, semi-engineered and traditional irrigation systems), it does not seem economical to introduce more expensive specialized irrigation systems or transform existing irrigation systems. One option, to improve the efficiency of water conduction, could be the use of polytubes of a certain diameter that extend throughout the field and have spaced holes for the outlet of an established flow rate (known as multiple-inlet irrigation).

This method is used in 32 % of the rice growing areas in Arkansas, with savings of 30 % of the volume of water Hardke et al. (2021)HARDKE, J.; SHA, X.; BATEMAN, N.: “BR Wells Arkansas rice research studies 2020. Arkansas Agricultural Experiment Station Research Series”, 2021, Disponible en:https://scholarworks.uark.edu/aaesser/200. and in Mississippi, it has allowed us to reduce the volume of water traditionally used by 22 % (Massey et al., 2022MASSEY, J.; REBA, M.; ADVIENTO-BORBE, M.; CHIU, Y.-L.; PAYNE, G.: “Direct comparisons of four irrigation systems on a commercial rice farm: Irrigation water use efficiencies and water dynamics”, Agricultural Water Management, 266: 107606, 2022, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2022.107606.) Likewise, in Uruguay, savings of up to 50 % in water volume and 30 % in labor costs have been reported (González y Alonso, 2016GONZÁLEZ, M.; ALONSO, A.M.: “Tecnologías para ahorrar agua en el cultivo de arroz”, Nova, 14(26): 63-78, 2016, ISSN: 1794-2470.). Also, in Cuba it has been tested with good results in the province of Camagüey and in the Los Palacios municipality, in Pinar del Río.

Another alternative could be the adoption of furrow irrigation, a practice that has increased significantly in recent years in the Hardke & Hardke (2021)HARDKE, J.T.; HARDKE, J.L.: Arkansas Furrow-Irrigated Rice, Inst. University of Arkansas System: Little Rock, AR, USA, Little Rock, AR, USA, 42 p., 2021. and manages to significantly reduce water and labor consumption, compared to traditional flooding (Stevens et al., 2018STEVENS, G.; RHINE, M.; HEISER, J.: “Rice production with furrow irrigation in the Mississippi river delta region of the USA”, Rice Crop: Current Developments; Shah, F., Khan, ZH, Iqbal, A., Eds, : 69-82, 2018.). Hussein et al. (2023)HUSSEIN, N.; EL ANSARY, M.; AWAD, M.; MOSTAFA, H.M.S.: “Effect of sprinkler and furrow irrigation systems on rice yield and its water productivity”, Misr Journal of Agricultural Engineering, 40(4): 319-330, 2023, ISSN: 1687-384X, DOI: 10.21608/mjae.2023.229501.1113. reported that the furrow irrigation technique outperformed the continuous flood irrigation technique, reducing water use by 33 % and increasing grain yield by 12,37 %. Similar results were obtained by Massey et al. (2022)MASSEY, J.; REBA, M.; ADVIENTO-BORBE, M.; CHIU, Y.-L.; PAYNE, G.: “Direct comparisons of four irrigation systems on a commercial rice farm: Irrigation water use efficiencies and water dynamics”, Agricultural Water Management, 266: 107606, 2022, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2022.107606. with a saving of 23 % of the water volume. Abdallah et al. (2018)ABDALLAH, A.; ALZOHEIRY, A.; BURKEY, K.: “Comparison of flooded and furrow-irrigated transplanted rice (Oryza sativa L.): Farm-level perspectives”, Journal of Irrigation and Drainage Engineering, 144(9): 04018022, 2018, ISSN: 0733-9437, DOI: https://doi.org/10.1061/(ASCE)IR.1943-4774.0001337., reported a significant reduction in water consumption and increased yield in transplanted rice, and concluded that furrow irrigation is a good option to optimize water use in surface irrigation systems in rice. Also, Hang et al. (2022)HANG, X.; DANSO, F.; LUO, J.; LIAO, D.; ZHANG, J.; ZHANG, J.: “Effects of water-saving irrigation on direct-seeding rice yield and greenhouse gas emissions in north China”, Agriculture, 12(7): 937, 2022, ISSN: 2077-0472, DOI: https://doi.org/10.3390/agriculture12070937. demonstrated that the adoption of furrow irrigation contributes to higher water productivity and yield of rice cultivation, and therefore recommended its implementation for sustainable water-saving rice production in northern China.

On the other hand, Carnevale et al. (2023)CARNEVALE-ZAMPAOLO, F.; KASSAM, A.; FRIEDRICH, T.; PARR, A.; UPHOFF, N.: “Compatibility between Conservation Agriculture and the System of Rice Intensification”, Agronomy, 13(11): 2758, 2023, ISSN: 2073-4395, DOI: 10.20944/preprints202309.1689.v1. suggest that raised bed furrow irrigation is the best way to grow rice and other crops under aerobic conditions, in lowlands with heavy clay soil. This method is compatible with CA principles of minimal soil disturbance and maintenance of permanent soil biomass cover. In this regard, it has been proven that the supply of water through lateral furrows to the crop in raised beds under AC conditions saves irrigation water Sharif et al. (2014)SHARIF, A.; KASSAM, A.; FRIEDRICH, T.; UPHOFF, N.; JOSHI, R.C.; SAHU, P.: “Towards the integration of the System of Rice Intensification (SRI) and Conservation Agriculture (CA) in the Indus Basin in Pakistan Punjab”, Fiji Agric. J, 54: 48-52, 2014. and reduces the consumption of energy carriers (Saharawat et al., 2022SAHARAWAT, Y.S.; GILL, M.; GATHALA, M.: Conservation agriculture in south Asia, Ed. Burleigh Dodds, Cambridge, UK, Kassam, A ed., vol. Advances in Conservation Agriculture, 3, Cambridge, UK, publisher: Cambridge University Press, 2022.). Furthermore, when there is excess rainwater in the field, it can be drained through the furrows to avoid unwanted flooding and its consequences (Lv et al., 2019LV, S.H.; DONG, Y.J.; JIANG, Y.; PADILLA, H.; LI, J.; UPHOFF, N.: “An opportunity for regenerative rice production: Combining plastic film cover and plant biomass mulch with no-till soil management to build soil carbon, curb nitrogen pollution, and maintain high-stable yield”, Agronomy, 9(10): 600, 2019, ISSN: 2073-4395.).

Sprinkler irrigation

 

Mechanized sprinkler irrigation systems (center pivot and mechanical lateral movement or front feed) are gaining attention among farmers in several countries, due to easy irrigation management, combined with greater water use efficiency and greater productivity productividad (Brito et al., 2020BRITO, M.A.; BARBAT, J.M.; TIMM, L.C.; COLLAZOS--ROMO, L.: “Concenço G, Stumpf L, Gomes B. Sprinkler irrigation in lowland rice: Crop yield and its components as a function of water availability in different phenological phases”, Field Crops Research, 248: 107714, 2020, DOI: https://doi.org/10.1016/j.fcr.2020.107714.; Singh et al., 2021SINGH, B.; MISHRA, S.; BISHT, D.S.; JOSHI, R.: “Growing rice with less water: Improving productivity by decreasing water demand”, En: Improving Productivity by Decreasing Water Demand. Rice Improvement, 2021, Growing Rice with Less Water, pp. 147-170, 2021, DOI: https://doi.org/10.1007/978-3-030-66530-2_5.). Furthermore, sprinkler irrigation makes it easier for farmers to adopt soil conservation practices, such as no-till farming and crop rotation (Pinto et al., 2020PINTO, M.A.B.; PARFITT, J.M.B.; TIMM, L.C.; FARIA, L.C.; CONCENÇO, G.; STUMPF, L.; NÖRENBERG, B.G.: “Sprinkler irrigation in lowland rice: Crop yield and its components as a function of water availability in different phenological phases”, Field Crops Research, 248: 107714, 2020, ISSN: 0378-4290.; Rato et al., 2023RATO-NUNES, J.M.; MARTÍN-FRANCO, C.; PEÑA, D.; TERRÓN-SÁNCHEZ, J.; VICENTE, L.A.; FERNÁNDEZ-RODRÍGUEZ, D.; ALBARRÁN, A.; LÓPEZ-PIÑEIRO, A.: “Combined use of biochar and sprinkler irrigation may enhance rice productivity in water-stressed regions”, Annals of Agricultural Sciences, 68(1): 48-59, 2023, ISSN: 0570-1783, DOI: http://doi.org/10.1016/j.aoas.2023.05.002.).

A two-year field study developed by Spanu et al. (2020)SPANU, A.; VALENTE, M.; LANGASCO, I.; LEARDI, R.; ORLANDONI, A.M.; CIULU, M.; DEROMA, M.A.; SPANO, N.; BARRACU, F.; PILO, M.I.: “Effect of the irrigation method and genotype on the bioaccumulation of toxic and trace elements in rice”, Science of The Total Environment, 748: 142484, 2020, ISSN: 0048-9697, DOI: http://doi.org/10.1016/j.scitotenv.2020.142484. under Mediterranean climatic conditions and for 26 rice genotypes, found that the average yields of rice irrigated by flooding and sprinklers were never statistically different from each other. Also, Hussein et al. (2023)HUSSEIN, N.; EL ANSARY, M.; AWAD, M.; MOSTAFA, H.M.S.: “Effect of sprinkler and furrow irrigation systems on rice yield and its water productivity”, Misr Journal of Agricultural Engineering, 40(4): 319-330, 2023, ISSN: 1687-384X, DOI: 10.21608/mjae.2023.229501.1113. in clay soil of Egypt managed to grow rice under the sprinkler irrigation system, with higher values ​​of grain yield, water use efficiency and water productivity, compared to furrow irrigation and irrigation continuous flooding. Similar results were reported by Brito et al. (2020)BRITO, M.A.; BARBAT, J.M.; TIMM, L.C.; COLLAZOS--ROMO, L.: “Concenço G, Stumpf L, Gomes B. Sprinkler irrigation in lowland rice: Crop yield and its components as a function of water availability in different phenological phases”, Field Crops Research, 248: 107714, 2020, DOI: https://doi.org/10.1016/j.fcr.2020.107714. in temperate climate of southern Brazil.

In this regard, it is proposed that the yields of aerobic rice irrigated by sprinkler can be equivalent or higher than those of continuously flooded rice, when irrigation was activated with a soil tension between ≤15 and ≤30 kPa (Champness et al., 2023CHAMPNESS, M.; BALLESTER, C.; HORNBUCKLE, J.: “Effect of soil moisture deficit on aerobic rice in temperate Australia”, Agronomy, 13(1): 168, 2023, ISSN: 2073-4395, DOI: https://doi.org/10.3390/agronomy13010168.). However, these soil tension thresholds determined in studies of other environments may not be ideal in tropical climates such as that of Cuba. Taking into account that Brito et al. (2020)BRITO, M.A.; BARBAT, J.M.; TIMM, L.C.; COLLAZOS--ROMO, L.: “Concenço G, Stumpf L, Gomes B. Sprinkler irrigation in lowland rice: Crop yield and its components as a function of water availability in different phenological phases”, Field Crops Research, 248: 107714, 2020, DOI: https://doi.org/10.1016/j.fcr.2020.107714. observed in Southern Brazil that a soil water tension of 10 kPa was adequate to manage sprinkler irrigation in rice, especially in the reproductive stage, using cultivars developed for flooded environments.

On the other hand, the transition from flood irrigation to sprinkler irrigation could bring important environmental advantages. As water needs are halved, it is not essential to use specific agricultural machinery for soil leveling and raising dikes, it may be possible to reduce the number and intensity of weed treatments (Peña et al., 2023PEÑA, D.; MARTÍN, C.; FERNÁNDEZ-RODRÍGUEZ, D.; TERRÓN-SÁNCHEZ, J.; VICENTE, L.A.; ALBARRÁN, A.; RATO-NUNES, J.M.; LÓPEZ-PIÑEIRO, A.: “Medium-Term Effects of Sprinkler Irrigation Combined with a Single Compost Application on Water and Rice Productivity and Food Safety”, Plants, 12(3): 456, 2023, ISSN: 2223-7747, DOI: https://doi.org/10.3390/plants12030456.). Furthermore, adopting sprinkler irrigation for rice can be an economically viable option for farmers (Hussein et al., 2023HUSSEIN, N.; EL ANSARY, M.; AWAD, M.; MOSTAFA, H.M.S.: “Effect of sprinkler and furrow irrigation systems on rice yield and its water productivity”, Misr Journal of Agricultural Engineering, 40(4): 319-330, 2023, ISSN: 1687-384X, DOI: 10.21608/mjae.2023.229501.1113.).

Localized irrigation in rice

 

Drip irrigation is a water-saving technology that is used in rice production with mainly dry direct sowing (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.), although it has also been used with good results in transplanted rice and in combination with the practices of the Rice Intensification System (Rao et al., 2017RAO, K.; GANGWAR, S.; KESHRI, R.; CHOURASIA, L.; BAJPAI, A.; SONI, K.: “Effects of drip irrigation system for enhancing rice (Oryza sativa L.) yield under system of rice intensification management.”, Applied Ecology & Environmental Research, 15(4): 487-495, 2017, ISSN: 1589-1623, DOI: http://dx.doi.org/10.15666/aeer/1504_487495.; Padmanabhan, 2019PADMANABHAN, S.: “Drip irrigation technology for rice cultivation for enhancing rice productivity and reducing water consumption”, En: Proceedings of the 3rd World Irrigation Forum (WIF3), Bali, Indonesia, pp. 1-7, 2019.). Drip irrigation consists of adding water to the soil slowly and at frequent intervals to maintain the moisture content in the soil close to field capacity (Merza et al., 2023MERZA, N.; ATAB, H.; AL-FATLAWI, Z.; ALSHARIFI, S.: “Effect of irrigation systems on rice productivity.”, SABRAO Journal of Breeding and Genetics, 55(2): 587-597, 2023, DOI: http://doi.org/10.54910/sabrao2023.55.2.30.).

In drip irrigation, water losses due to evaporation, deep percolation, runoff and filtration decrease, compared to flood irrigation, which increases water productivity in the crop (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.). In addition, it improves tillering and the development and functioning of the root system (Rao et al., 2017RAO, K.; GANGWAR, S.; KESHRI, R.; CHOURASIA, L.; BAJPAI, A.; SONI, K.: “Effects of drip irrigation system for enhancing rice (Oryza sativa L.) yield under system of rice intensification management.”, Applied Ecology & Environmental Research, 15(4): 487-495, 2017, ISSN: 1589-1623, DOI: http://dx.doi.org/10.15666/aeer/1504_487495.; Parthasarathi et al., 2018PARTHASARATHI, T.; VANITHA, K.; MOHANDASS, S.; VERED, E.: “Evaluation of drip irrigation system for water productivity and yield of rice”, Agronomy Journal, 110(6): 2378-2389, 2018, ISSN: 0002-1962, DOI: https://doi.org/10.2134/AGRONJ2018.01.0002.; Merza et al., 2023MERZA, N.; ATAB, H.; AL-FATLAWI, Z.; ALSHARIFI, S.: “Effect of irrigation systems on rice productivity.”, SABRAO Journal of Breeding and Genetics, 55(2): 587-597, 2023, DOI: http://doi.org/10.54910/sabrao2023.55.2.30.). Likewise, it can provide better salinity control Ikramov et al. (2023)IKRAMOV, R.; GAPPARO, S.; DZHUMAEV, Z.; ABDUKHOLIK, U.: “Results of application of water-saving technologies in rice farming”, En: E3S Web of Conferences, Ed. EDP Sciences, vol. 401, p. 01041, 2023, DOI: https://doi.org/10.1051/e3sconf/202340101041, ISBN: 2267-1242. and allow the expansion of rice cultivation to mountainous areas (Gonçalves et al., 2020GONÇALVES, J.M.; FERREIRA, S.; NUNES, M.; AGRAWAL, R.; AMADOR, P.; FILIPE, O.; DUARTE, I.M.; TEIXEIRA, M.; VASCONCELOS, T.; OLIVEIRA, F.: “Developing irrigation management at district scale based on water monitoring: study on Lis valley, Portugal”, AgriEngineering, 2(1): 78-95, 2020, ISSN: 2624-7402.). However, the effect of drip irrigation on rice yield may vary depending on local and environmental conditions (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.).

Ikramov et al. (2023)IKRAMOV, R.; GAPPARO, S.; DZHUMAEV, Z.; ABDUKHOLIK, U.: “Results of application of water-saving technologies in rice farming”, En: E3S Web of Conferences, Ed. EDP Sciences, vol. 401, p. 01041, 2023, DOI: https://doi.org/10.1051/e3sconf/202340101041, ISBN: 2267-1242. in Uzbekistan report water savings of 26,4 % to 37,6 % with drip irrigation, but with a significant decrease in yield, which coincides with what was reported by Hang et al. (2022)HANG, X.; DANSO, F.; LUO, J.; LIAO, D.; ZHANG, J.; ZHANG, J.: “Effects of water-saving irrigation on direct-seeding rice yield and greenhouse gas emissions in north China”, Agriculture, 12(7): 937, 2022, ISSN: 2077-0472, DOI: https://doi.org/10.3390/agriculture12070937. in northern China. In contrast, Sasmita et al. (2022)SASMITA, P.; AGUSTIANI, N.; MARGARET, S.; ARDHIYANTI, S.D.; SUPRIHANTO, S.; NUGRAHA, Y.; SUHARTINI, S.: “Drip irrigation technology performance on rice cultivation”, Jurnal Teknik Pertanian Lampung, 11(1): 130-145, 2022, DOI: http://dx.doi.org/10.23960/jtep-l.v11.i1.130-145. in Indonesia obtained agricultural yield similar to the traditional flooding system, and suggest that fertigation through drip irrigation can increase crop yield by applying adequate fertilizer. In this sense, Padmanabhan (2019)PADMANABHAN, S.: “Drip irrigation technology for rice cultivation for enhancing rice productivity and reducing water consumption”, En: Proceedings of the 3rd World Irrigation Forum (WIF3), Bali, Indonesia, pp. 1-7, 2019. y Soman (2021)SOMAN, P.: “Drip Irrigation and Fertigation Technology for Rice Production Leading to Higher Water Productivity”, International Journal of Water Resources and Arid Environments, 10(2): 70-77, 2021, ISSN: 2079-7079. in India observed that the drip system with fertigation saved between 50 and 61 % of water, increased rice yield (13-28 %) in all varieties in comparison with the yields recorded with the conventional flooding method, with better efficiency of the use of N, P and K under drip fertigation. Similar results are described by Merza et al. (2023)MERZA, N.; ATAB, H.; AL-FATLAWI, Z.; ALSHARIFI, S.: “Effect of irrigation systems on rice productivity.”, SABRAO Journal of Breeding and Genetics, 55(2): 587-597, 2023, DOI: http://doi.org/10.54910/sabrao2023.55.2.30. in Iraq.

However, drip irrigation systems require specialized installation and maintenance, including checking emitters for leaks or blockages, adjusting water flow, and monitoring soil moisture levels. This implies a greater need for labor and high production costs, making them not feasible for poor farmers and areas with labor shortages (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.).

Irrigation management that saves water

 

Although experiments on rice production with drip and sprinkler irrigation systems are promising, traditional surface irrigation with continuous flooding practices is the most widely implemented in the world for rice cultivation (Meriguetti et al., 2023MERIGUETTI-PINTO, V.; BORJA-REIS, A.F.; ABREU, M.L.; REICHARDT, K.; SANTOS, D.; JONG, Q.: “Sustainable irrigation management in tropical lowland rice in Brazil”, Agricultural Water Management, 284: 108345, 2023, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2023.108345.; Arouna et al., 2023AROUNA, A.; DZOMEKU, I.K.; SHAIBU, A.-G.; NURUDEEN, A.R.: “Water management for sustainable irrigation in rice (Oryza sativa L.) production: A review”, Agronomy, 13(6): 1522, 2023, ISSN: 2073-4395, DOI: https://doi.org/10.3390/agronomy13061522.). Given this situation, an alternative may be to develop and adopt irrigation practices that improve water use efficiency without affecting yield (Arouna et al., 2023AROUNA, A.; DZOMEKU, I.K.; SHAIBU, A.-G.; NURUDEEN, A.R.: “Water management for sustainable irrigation in rice (Oryza sativa L.) production: A review”, Agronomy, 13(6): 1522, 2023, ISSN: 2073-4395, DOI: https://doi.org/10.3390/agronomy13061522.).

Among the irrigation management methods that save water in rice cultivation, the following stand out internationally: the alternative wetting and drying (AWD) method, the aerobic rice system, saturated soil cultivation (SSC) and intelligent irrigation with sensors and internet of things (IoT) (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.). However, each management has its own peculiarities and must be adopted taking into account the type of soil, climatic suitability, the irrigation technique traditionally used, the characteristics of the fields (topography or leveling), the dimensions of the farms, the conditions economics and farmers' familiarity with digital technologies (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.).

Alternate Wetting and Drying

 

The AWD is the most used water-saving management in rice production (Bwire et al., 2023BWIRE, D.; SAITO, H.; SIDLE, R.C.; NISHIWAKI, J.: “Water Management and Hydrological Characteristics of Rice-Paddy Catchments Under AWD Irrigation Practice: Asia and Sub-Saharan Africa”, 2023, DOI: 10.20944/preprints202311.1677.v1.). It is based on intermittent flooding of rice fields and consists of alternating aerobic and anaerobic soil conditions, except during the stages of rooting (transplant rice), panicle formation and flowering (Bwire et al., 2023BWIRE, D.; SAITO, H.; SIDLE, R.C.; NISHIWAKI, J.: “Water Management and Hydrological Characteristics of Rice-Paddy Catchments Under AWD Irrigation Practice: Asia and Sub-Saharan Africa”, 2023, DOI: 10.20944/preprints202311.1677.v1.). It can be applied after sowing in water or dry Gharsallah et al. (2023)GHARSALLAH, O.; RIENZNER, M.; MAYER, A.; TKACHENKO, D.; CORSI, S.; VUCITERNA, R.; ROMANI, M.; RICCIARDELLI, A.; CADEI, E.; TREVISAN, M.: “Economic, environmental, and social sustainability of Alternate Wetting and Drying irrigation for rice in northern Italy”, Frontiers in Water, 5: 1213047, 2023, ISSN: 2624-9375, DOI: 10.3389/frwa.2023.1213047. and 1-2 weeks after transplanting (Bwire et al., 2023BWIRE, D.; SAITO, H.; SIDLE, R.C.; NISHIWAKI, J.: “Water Management and Hydrological Characteristics of Rice-Paddy Catchments Under AWD Irrigation Practice: Asia and Sub-Saharan Africa”, 2023, DOI: 10.20944/preprints202311.1677.v1.).

In AWD, irrigation is interrupted for days and when the water content in the soil layer explored by plant roots falls below a threshold value, the field is flooded again to a depth of 5-12 cm (Bwire et al., 2023BWIRE, D.; SAITO, H.; SIDLE, R.C.; NISHIWAKI, J.: “Water Management and Hydrological Characteristics of Rice-Paddy Catchments Under AWD Irrigation Practice: Asia and Sub-Saharan Africa”, 2023, DOI: 10.20944/preprints202311.1677.v1.; Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.; Wichaidist et al., 2023WICHAIDIST, B.; INTRMAN, A.; PUTTRAWUTICHAI, S.; REWTRAGULPAIBUL, C.; CHUANPONGPANICH, S.; SUKSAROJ, C.: “The effect of irrigation techniques on sustainable water management for rice cultivation system-a review”, Applied Environmental Research, 45(4), 2023, ISSN: 2287-075X, DOI: https://doi.org/10.35762/AER.2023024.). This technique is being implemented in countries such as India, Philippines, Myanmar, Vietnam, Bangladesh, China, Italy, Nepal, Indonesia and the United States of America (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.; Wichaidist et al., 2023WICHAIDIST, B.; INTRMAN, A.; PUTTRAWUTICHAI, S.; REWTRAGULPAIBUL, C.; CHUANPONGPANICH, S.; SUKSAROJ, C.: “The effect of irrigation techniques on sustainable water management for rice cultivation system-a review”, Applied Environmental Research, 45(4), 2023, ISSN: 2287-075X, DOI: https://doi.org/10.35762/AER.2023024.). In Cuba it is known as replacement irrigation (MINAG, 2020MINAG: Instructivo Técnico Instructivo Técnico del cultivo del arroz, Ed. Ministerio de la Agricultura. La Habana, Cuba, La Habana, Cuba, 142 p., publisher: Ed. Instituto de Investigaciones del Arroz, Ministerio de la Agricultura …, 2020.).

According to Carrijo et al. (2017)CARRIJO, D.R.; LUNDY, M.E.; LINQUIST, B.A.: “Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis”, Field Crops Research, 203: 173-180, 2017, ISSN: 0378-4290, DOI: https://doi.org/10.1016/j.fcr.2016.12.00. research has shown that maintaining a soil water potential (SWP) of ≥ 20 kPa or ensuring that the water level in the field does not fall below 15 cm from the soil surface, ensures that plants do not suffer drought stress and yields are not significantly affected, regardless of the planting method (transplanting or direct sowing) and the type of cultivar (hybrid or genetic). Recent research also agrees that a 15 cm threshold guarantees that there is no significant reduction in performance (Bwire et al., 2023BWIRE, D.; SAITO, H.; SIDLE, R.C.; NISHIWAKI, J.: “Water Management and Hydrological Characteristics of Rice-Paddy Catchments Under AWD Irrigation Practice: Asia and Sub-Saharan Africa”, 2023, DOI: 10.20944/preprints202311.1677.v1.; Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.; Wichaidist et al., 2023WICHAIDIST, B.; INTRMAN, A.; PUTTRAWUTICHAI, S.; REWTRAGULPAIBUL, C.; CHUANPONGPANICH, S.; SUKSAROJ, C.: “The effect of irrigation techniques on sustainable water management for rice cultivation system-a review”, Applied Environmental Research, 45(4), 2023, ISSN: 2287-075X, DOI: https://doi.org/10.35762/AER.2023024.)., which may represent a challenge for farmers to track optimal irrigation threshold variations.

The threshold soil water content can be monitored using soil water status sensors or devices (such as tensiometers or observation wells) (Bwire et al., 2023BWIRE, D.; SAITO, H.; SIDLE, R.C.; NISHIWAKI, J.: “Water Management and Hydrological Characteristics of Rice-Paddy Catchments Under AWD Irrigation Practice: Asia and Sub-Saharan Africa”, 2023, DOI: 10.20944/preprints202311.1677.v1.; Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.). Likewise, automating the practice of AWD through Internet of Things (IoT)-based smart sensors and real-time alerts that apply soil, crop, and climate information, can optimize water use efficiency (Pham et al., 2021PHAM, V.B.; DIEP, T.T.; FOCK, K.; NGUYEN, T.S.: “Using the Internet of Things to promote alternate wetting and drying irrigation for rice in Vietnam’s Mekong Delta”, Agronomy for Sustainable Development, 41(3): 43, 2021, ISSN: 1774-0746, DOI: https://doi.org/10.1007/s13593-021-00705-z.).

AWD irrigation has been shown to save irrigation water, improve water use efficiency, reduce greenhouse gas emissions, save fertilizers and pesticides. Based on a meta-analysis of 56 studies, Carrijo et al. (2017)CARRIJO, D.R.; LUNDY, M.E.; LINQUIST, B.A.: “Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis”, Field Crops Research, 203: 173-180, 2017, ISSN: 0378-4290, DOI: https://doi.org/10.1016/j.fcr.2016.12.00. established that this AWD irrigation method saved 25,7 % of water input, with higher rice productivity. But Mallareddy et al. (2023)MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802. suggest that it can reduce water use by up to 37 % without affecting production, because it stimulates root growth (deeper root system). This behavior of the roots allows better absorption of water and nutrients from the deeper layers of the soil, and also makes plants more tolerant to water stress (Singh & Chakraborti, 2019SINGH, A.; CHAKRABORTI, M.: “Water and nitrogen use efficiency in SRI through AWD and LCC”, The Indian Journal of Agricultural Sciences, 89(12): 2059-2063, 2019, ISSN: 2394-3319, DOI: https://doi.org/10.56093/ijas.v89i12.96274.). Likewise, (Bouman & Lampayan, 2009BOUMAN, B.A.M.; LAMPAYAN, R.M.: Rice Fact Sheet-Alternate Wetting Drying (AWD), Inst. International Rice Research Institute: Los Baños, Philippines, Los Baños, Philippines, 2009.), noted that intermittent irrigation with AWD decreased insect pests by 92 % and diseases by 100 %.

On the other hand, numerous studies on AWD have highlighted additional benefits, such as: reduction in irrigation frequency; fuel savings; reducing greenhouse gas (GHG) emissions, particularly methane; greater efficiency in the use of nitrogen and phosphorus, and lower accumulation of contaminants such as arsenic (As) and mercury (Hg) in the grain grano (Islam et al., 2022ISLAM, S.; GAIHRE, Y.K.; ISLAM, M.R.; AHMED, M.N.; AKTER, M.; SINGH, U.; SANDER, B.O.: “Mitigating greenhouse gas emissions from irrigated rice cultivation through improved fertilizer and water management”, Journal of Environmental Management, 307: 114520, 2022, ISSN: 0301-4797, DOI: https://doi.org/10.1016/j.jenvman.2022.114520.; Bwire et al., 2023BWIRE, D.; SAITO, H.; SIDLE, R.C.; NISHIWAKI, J.: “Water Management and Hydrological Characteristics of Rice-Paddy Catchments Under AWD Irrigation Practice: Asia and Sub-Saharan Africa”, 2023, DOI: 10.20944/preprints202311.1677.v1.; Wichaidist et al., 2023WICHAIDIST, B.; INTRMAN, A.; PUTTRAWUTICHAI, S.; REWTRAGULPAIBUL, C.; CHUANPONGPANICH, S.; SUKSAROJ, C.: “The effect of irrigation techniques on sustainable water management for rice cultivation system-a review”, Applied Environmental Research, 45(4), 2023, ISSN: 2287-075X, DOI: https://doi.org/10.35762/AER.2023024.).

However, AWD may not be the most suitable approach for growing rice on sandy soils as water drains away quickly resulting in minimal water savings. Similarly, in heavy clay soils and shallow water tables, it may not be necessary, since in these soils the water table never falls below the lowest roots (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.). Likewise, studies conducted by Gharsallah et al. (2023)GHARSALLAH, O.; RIENZNER, M.; MAYER, A.; TKACHENKO, D.; CORSI, S.; VUCITERNA, R.; ROMANI, M.; RICCIARDELLI, A.; CADEI, E.; TREVISAN, M.: “Economic, environmental, and social sustainability of Alternate Wetting and Drying irrigation for rice in northern Italy”, Frontiers in Water, 5: 1213047, 2023, ISSN: 2624-9375, DOI: 10.3389/frwa.2023.1213047. in Italy, indicated that the total variable costs applying AWD were approximately 71 euros higher compared to continuous flooding, which they attributed to a greater need for labor for irrigation management.

A promising agricultural practice that, associated with AWD, can offer superior options in terms of water savings, rice productivity and GHG emissions reduction is conservation agriculture (Gangopadhyay et al., 2023GANGOPADHYAY, S.; CHOWDHURI, I.; DAS, N.; PAL, S.C.; MANDAL, S.: “The effects of no-tillage and conventional tillage on greenhouse gas emissions from paddy fields with various rice varieties”, Soil and Tillage Research, 232: 105772, 2023, ISSN: 0167-1987, DOI: https://doi.org/10.1016/j.still.2023.105772.). The application of CA principles based on minimal soil disturbance, residue retention on the field surface and crop rotation, improves soil health and the water retention capacity of rice soils Domínguez et al. (2024)DOMÍNGUEZ, V.C.; MIRANDA, C.A.; DÍAZ, L.G.; DOMÍNGUEZ, P.D.; DUARTE, D.C.; RUIZ, S.J.; RODRÍGUEZ, A.: “Properties of a cultivated soil of irrigated rice under conservation agriculture principles”, Net Journal of Agricultural Science, 12(1): 9-16, 2024, DOI: 10.30918/NJAS.121.24.011., which contributes to reducing GHG emissions and increasing water efficiency.

Aerobic rice system

 

Aerobic rice cultivation is an approach to growing rice in well-drained, non-flooded and unsaturated soils without standing water (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.; Saikumar et al., 2023SAIKUMAR, G.; JINSY, V.; SUMESH, K.: “Agro-economic evaluation of aerobic rice+ legume intercropping system under varying levels of nitrogen.”, The Mysore Journal of Agricultural Sciences, 57(3): 146-152, 2023.). Generally, rice is planted on dry soil, without any flooding, and the field is irrigated intermittently. Although, sometimes water management consists of short dips, which can last a few days, alternated with longer dry periods Monaco et al. (2016)MONACO, F.; SALI, G.; BEN HASSEN, M.; FACCHI, A.; ROMANI, M.; VALÈ, G.: “Water management options for rice cultivation in a temperate area: a multi-objective model to explore economic and water saving results”, Water, 8(8): 336, 2016, ISSN: 2073-4441, DOI: 10.3390/w8080336., so specific aerobic rice cultivars must be used. This system is compatible with System of Rice Intensification (SRI) practices and irrigation technologies such as wetting and drying (AWD) Kumar et al. (2023)KUMAR, R.M.; CHINTALAPATI, P.; RATHOD, S.; VIDHAN SINGH, T.; KUCHI, S.; MANNAVA, P.B.; LATHA, P.C.; SOMASEKHAR, N.; BANDUMULA, N.; MADAMSETTY, S.: “Comparison of System of Rice Intensification Applications and Alternatives in India: Agronomic, Economic, Environmental, Energy, and Other Effects”, Agronomy, 13(10): 2492, 2023, ISSN: 2073-4395, DOI: . https://doi.org/10.3390/ agronomy13102492. and drip irrigation (Sasmita et al., 2022SASMITA, P.; AGUSTIANI, N.; MARGARET, S.; ARDHIYANTI, S.D.; SUPRIHANTO, S.; NUGRAHA, Y.; SUHARTINI, S.: “Drip irrigation technology performance on rice cultivation”, Jurnal Teknik Pertanian Lampung, 11(1): 130-145, 2022, DOI: http://dx.doi.org/10.23960/jtep-l.v11.i1.130-145.) can be used.

Among the main advantages of this cultivation system are water savings, the reduction of greenhouse gas emissions and the potential for global warming (Kumar et al., 2023KUMAR, R.M.; CHINTALAPATI, P.; RATHOD, S.; VIDHAN SINGH, T.; KUCHI, S.; MANNAVA, P.B.; LATHA, P.C.; SOMASEKHAR, N.; BANDUMULA, N.; MADAMSETTY, S.: “Comparison of System of Rice Intensification Applications and Alternatives in India: Agronomic, Economic, Environmental, Energy, and Other Effects”, Agronomy, 13(10): 2492, 2023, ISSN: 2073-4395, DOI: . https://doi.org/10.3390/ agronomy13102492.). In addition, it can facilitate the traffic of agricultural machinery and facilitate the harvest-transport process. Also, it favors the rotation of rice with legumes and legumes that provide nitrogen to the soil Saikumar et al. (2023)SAIKUMAR, G.; JINSY, V.; SUMESH, K.: “Agro-economic evaluation of aerobic rice+ legume intercropping system under varying levels of nitrogen.”, The Mysore Journal of Agricultural Sciences, 57(3): 146-152, 2023., but the change from conventional flooded rice cultivation to an aerobic rice system has generally resulted in lower yields (Champness et al., 2023CHAMPNESS, M.; BALLESTER, C.; HORNBUCKLE, J.: “Effect of soil moisture deficit on aerobic rice in temperate Australia”, Agronomy, 13(1): 168, 2023, ISSN: 2073-4395, DOI: https://doi.org/10.3390/agronomy13010168.; Meriguetti et al., 2023MERIGUETTI-PINTO, V.; BORJA-REIS, A.F.; ABREU, M.L.; REICHARDT, K.; SANTOS, D.; JONG, Q.: “Sustainable irrigation management in tropical lowland rice in Brazil”, Agricultural Water Management, 284: 108345, 2023, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2023.108345.). In aerobic rice cultivation, there may be greater weed infestation and it may be necessary to use intensive weed control measures, such as the application of herbicides or manual weeding (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.). Research conducted by Champness et al. (2023)CHAMPNESS, M.; BALLESTER, C.; HORNBUCKLE, J.: “Effect of soil moisture deficit on aerobic rice in temperate Australia”, Agronomy, 13(1): 168, 2023, ISSN: 2073-4395, DOI: https://doi.org/10.3390/agronomy13010168. in temperate areas of Australia demonstrates that aerobic rice requires more than 20 irrigation events per season, which implies high demand for labor, so the adoption of aerobic rice on a commercial scale is unlikely without the use of automated irrigation technology.

Saturated soil cultivation (SSC)

 

Is a water management alternative in which shallow irrigation is applied to achieve about 1 cm of water depth for one or two days after standing water has disappeared (Bwire et al., 2023BWIRE, D.; SAITO, H.; SIDLE, R.C.; NISHIWAKI, J.: “Water Management and Hydrological Characteristics of Rice-Paddy Catchments Under AWD Irrigation Practice: Asia and Sub-Saharan Africa”, 2023, DOI: 10.20944/preprints202311.1677.v1.; Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.). Generally, SSC involves watering the field to a depth of approximately 1 cm per day after standing water has dissipated (Wichaidist et al., 2023WICHAIDIST, B.; INTRMAN, A.; PUTTRAWUTICHAI, S.; REWTRAGULPAIBUL, C.; CHUANPONGPANICH, S.; SUKSAROJ, C.: “The effect of irrigation techniques on sustainable water management for rice cultivation system-a review”, Applied Environmental Research, 45(4), 2023, ISSN: 2287-075X, DOI: https://doi.org/10.35762/AER.2023024.). In SSC, the soil is kept as close to saturation as possible, which reduces hydraulic loading and decreases losses through filtration and percolation (Bwire et al., 2023BWIRE, D.; SAITO, H.; SIDLE, R.C.; NISHIWAKI, J.: “Water Management and Hydrological Characteristics of Rice-Paddy Catchments Under AWD Irrigation Practice: Asia and Sub-Saharan Africa”, 2023, DOI: 10.20944/preprints202311.1677.v1.). The depth of water above ground is kept below 3 cm (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.).

According to Matsue et al. (2021)MATSUE, Y.; TAKASAKI, K.; ABE, J.: “Water management for improvement of rice yield, appearance quality and palatability with high temperature during ripening period”, Rice Science, 28(4): 409-416, 2021, ISSN: 1672-6308, DOI: https://doi.org/10.1016/j.rsci.2021.05.011. SSC irrigation can significantly increase grain yield by increasing the percentage of filled grains compared to the traditional flooding system. In Australia, SSC used about 32 % less water compared to traditional flooded rice production in both seasons (wet and dry), with no effect on grain yield and quality (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.). A similar result was obtained by Borja et al. (2018)BORJA, R.A.F.; ALMEIDA, R.E.; LAGO, B.C.; TRIVELIN, P.C.; LINQUIST, B.; FAVARIN, J.L.: “Aerobic rice system improves water productivity, nitrogen recovery and crop performance in Brazilian weathered lowland soil”, Field Crops Research, 218: 59-68, 2018, ISSN: 0378-4290, DOI: https://doi.org/10.1016/j.fcr.2018.01.002. in Brazil.

SSC facilitates maximum utilization of rainfall and reduces the number of irrigations required for crop development, thereby reducing irrigation cost, energy required for irrigation, and irrigation water (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.). Furthermore, it can improve the nitrogen and phosphorus utilization efficiency of the rice plant, and consequently reduce the need for fertilizers (Wichaidist et al., 2023WICHAIDIST, B.; INTRMAN, A.; PUTTRAWUTICHAI, S.; REWTRAGULPAIBUL, C.; CHUANPONGPANICH, S.; SUKSAROJ, C.: “The effect of irrigation techniques on sustainable water management for rice cultivation system-a review”, Applied Environmental Research, 45(4), 2023, ISSN: 2287-075X, DOI: https://doi.org/10.35762/AER.2023024.). At the same time, it has the potential to mitigate greenhouse gas (GHG) emissions, particularly methane emissions (Wichaidist et al., 2023WICHAIDIST, B.; INTRMAN, A.; PUTTRAWUTICHAI, S.; REWTRAGULPAIBUL, C.; CHUANPONGPANICH, S.; SUKSAROJ, C.: “The effect of irrigation techniques on sustainable water management for rice cultivation system-a review”, Applied Environmental Research, 45(4), 2023, ISSN: 2287-075X, DOI: https://doi.org/10.35762/AER.2023024.).

Smart Irrigation

 

This technology is based on the use of smart irrigation sensors, the Internet of Things (loT), wireless communications, networks of automatic weather stations, improved measurement of crop evapotranspiration, aerial and satellite images, and cloud computing technology. Wireless networks are used to collect data from soil moisture sensors, which can then be accessed via a web browser or smartphone application (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.; Zeng et al., 2023ZENG, Y.-F.; CHEN, C.-T.; LIN, G.-F.: “Practical application of an intelligent irrigation system to rice paddies in Taiwan”, Agricultural Water Management, 280: 108216, 2023, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2023.108216.).

The IoT-based smart irrigation system enables real-time remote monitoring of moisture content and precise irrigation management in rice fields, through mobile devices (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.; Zeng et al., 2023ZENG, Y.-F.; CHEN, C.-T.; LIN, G.-F.: “Practical application of an intelligent irrigation system to rice paddies in Taiwan”, Agricultural Water Management, 280: 108216, 2023, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2023.108216.). Irrigation systems can be automated to adapt to different crops, soil, climate and other factors with the help of humidity and temperature sensors, IoT devices and machine learning algorithms (Vijayakumar et al., 2022bVIJAYAKUMAR, S.; KUMAR, D.; RAMESH, K.; JINGER, D.; RAJPOOT, S.K.: “Effect of Potassium fertilization on water productivity, irrigation water use efficiency, and grain quality under direct seeded rice-wheat cropping system”, J. Plant Nutr., 45: 2023-2038, 2022b.). In addition, they can be integrated with other technologies, such as weather forecasting or images taken by drones, to optimize the irrigation process (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.).

Automation of irrigation systems increases production without requiring labor, improves the quality and efficiency of crop water use, while reducing water consumption, time, cost and energy expenditure of irrigation (Vijayakumar et al., 2022aVIJAYAKUMAR, S.; CHOUDHARY, A.K.; DEIVEEGAN, M.; THIRUMALAIKUMAR, R.; KUMAR, R.M.: “Android based mobile application for rice crop management”, Chronicle of Bioresource Management, 6(Mar, 1): 019-024, 2022a.; Zeng et al., 2023ZENG, Y.-F.; CHEN, C.-T.; LIN, G.-F.: “Practical application of an intelligent irrigation system to rice paddies in Taiwan”, Agricultural Water Management, 280: 108216, 2023, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2023.108216.). IoT systems are particularly useful in regions with a limited workforce due to a shrinking rural population, an aging population, or rising labor wages in agricultural activities, as it reduces the need for labor by 19,1 % to 24,5 %, compared with the conventional irrigation system (Lee, 2022LEE, J.: “Evaluation of automatic irrigation system for rice cultivation and sustainable agriculture water management”, Sustainability, 14(17): 11044, 2022, ISSN: 2071-1050, DOI: https://doi.org/10.3390/su141711044.; Zeng et al., 2023ZENG, Y.-F.; CHEN, C.-T.; LIN, G.-F.: “Practical application of an intelligent irrigation system to rice paddies in Taiwan”, Agricultural Water Management, 280: 108216, 2023, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2023.108216.). Additionally, farmers can increase water-saving benefits if combined with technologies such as AWD, SRI, or intermittent irrigation (Pham et al., 2021PHAM, V.B.; DIEP, T.T.; FOCK, K.; NGUYEN, T.S.: “Using the Internet of Things to promote alternate wetting and drying irrigation for rice in Vietnam’s Mekong Delta”, Agronomy for Sustainable Development, 41(3): 43, 2021, ISSN: 1774-0746, DOI: https://doi.org/10.1007/s13593-021-00705-z.; Zeng et al., 2023ZENG, Y.-F.; CHEN, C.-T.; LIN, G.-F.: “Practical application of an intelligent irrigation system to rice paddies in Taiwan”, Agricultural Water Management, 280: 108216, 2023, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2023.108216.).

However, the adoption and dissemination of automated irrigation systems based on IoT sensors in rice fields may be slow due to factors such as lack of technical expertise of farmers and the high cost of the sensors used to intelligent automatic irrigation, which is fundamentally inaccessible to small farmers (García et al., 2020GARCÍA, L.; PARRA, L.; JIMENEZ, J.M.; LLORET, J.; LORENZ, P.: “IoT-based smart irrigation systems: An overview on the recent trends on sensors and IoT systems for irrigation in precision agriculture”, Sensors, 20(4): 1042, 2020, ISSN: 1424-8220, DOI: https://doi.org/10.3390/s20041042.; Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.). Furthermore, for its use it is necessary that there is a quality Internet connection so that the data can be sent from the sender to the receiver, which, in the rice-growing areas of Cuba, is still a problem.

Agronomic practices that save water

 

In irrigated rice cultivation, the multiple agronomic solutions that can be adopted to save water include:

  • A change in the crop mix, introduction of new rice cultivars with genetically improved characteristics that require less water Surendran et al. (2021)SURENDRAN, U.; RAJA, P.; JAYAKUMAR, M.; SUBRAMONIAM, S.R.: “Use of efficient water saving techniques for production of rice in India under climate change scenario: A critical review”, Journal of Cleaner Production, 309: 127272, 2021, ISSN: 0959-6526, DOI: https://doi.org/10.1016/j.jclepro.2021.127272. and short cycle (Monaco et al., 2016MONACO, F.; SALI, G.; BEN HASSEN, M.; FACCHI, A.; ROMANI, M.; VALÈ, G.: “Water management options for rice cultivation in a temperate area: a multi-objective model to explore economic and water saving results”, Water, 8(8): 336, 2016, ISSN: 2073-4441, DOI: 10.3390/w8080336.; Hussein et al., 2023HUSSEIN, N.; EL ANSARY, M.; AWAD, M.; MOSTAFA, H.M.S.: “Effect of sprinkler and furrow irrigation systems on rice yield and its water productivity”, Misr Journal of Agricultural Engineering, 40(4): 319-330, 2023, ISSN: 1687-384X, DOI: 10.21608/mjae.2023.229501.1113.).

  • The use of vegetal covers Wei et al. (2019)WEI, Q.; XU, J.; SUN, L.; WANG, H.; LV, Y.; LI, Y.; HAMEED, F.: “Effects of straw returning on rice growth and yield under water-saving irrigation”, Chilean journal of agricultural research, 79(1): 66-74, 2019, ISSN: 0718-5839, DOI: https://doi.org/10.4067/S0718-58392019000100066.; Singh et al. (2021)SINGH, B.; MISHRA, S.; BISHT, D.S.; JOSHI, R.: “Growing rice with less water: Improving productivity by decreasing water demand”, En: Improving Productivity by Decreasing Water Demand. Rice Improvement, 2021, Growing Rice with Less Water, pp. 147-170, 2021, DOI: https://doi.org/10.1007/978-3-030-66530-2_5. or plastic mulch Zhang et al. (2022)ZHANG, W.; TIAN, Y.; FENG, Y.; LIU, J.; ZHENG, C.: “Water-Saving Potential of Different Agricultural Management Practices in an Arid River Basin”, Water, 14(13): 2072, 2022, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w14132072., especially in conditions of unsaturated aerobic soil (Singh et al., 2021SAHA, A.; GUPT, C.B.; SEKHARAN, S.: “Recycling natural fibre to superabsorbent hydrogel composite for conservation of irrigation water in semi-arid regions”, Waste and Biomass Valorization, 12(12): 6433-6448, 2021, ISSN: 1877-2641, DOI: https://doi.org/10.1007/s12649-021-01489-9.).

  • Dry sowing and intermittent irrigation, known as aerobic rice (Monaco et al., 2016MONACO, F.; SALI, G.; BEN HASSEN, M.; FACCHI, A.; ROMANI, M.; VALÈ, G.: “Water management options for rice cultivation in a temperate area: a multi-objective model to explore economic and water saving results”, Water, 8(8): 336, 2016, ISSN: 2073-4441, DOI: 10.3390/w8080336.).

  • Application of organic matter (Chen et al., 2022CHEN, K.; YU, S.; MA, T.; DING, J.; HE, P.; DAI, Y.; ZENG, G.: “Effects of water and nitrogen management on water productivity, nitrogen use efficiency and leaching loss in rice paddies. Water 14 (10): 1596”, Water, 14(10): 1596, 2022, DOI: https://doi.org/10.3390/w14101596.).

  • Practice no-till cultivation and direct sowing Gangopadhyay et al. (2023)GANGOPADHYAY, S.; CHOWDHURI, I.; DAS, N.; PAL, S.C.; MANDAL, S.: “The effects of no-tillage and conventional tillage on greenhouse gas emissions from paddy fields with various rice varieties”, Soil and Tillage Research, 232: 105772, 2023, ISSN: 0167-1987, DOI: https://doi.org/10.1016/j.still.2023.105772., which implies eliminating traditional tillage and the practice of fangueo (Carnevale et al., 2023CARNEVALE-ZAMPAOLO, F.; KASSAM, A.; FRIEDRICH, T.; PARR, A.; UPHOFF, N.: “Compatibility between Conservation Agriculture and the System of Rice Intensification”, Agronomy, 13(11): 2758, 2023, ISSN: 2073-4395, DOI: 10.20944/preprints202309.1689.v1.).

  • The implementation of efficient weed control methods (Monaco et al., 2016MONACO, F.; SALI, G.; BEN HASSEN, M.; FACCHI, A.; ROMANI, M.; VALÈ, G.: “Water management options for rice cultivation in a temperate area: a multi-objective model to explore economic and water saving results”, Water, 8(8): 336, 2016, ISSN: 2073-4441, DOI: 10.3390/w8080336.; Farooq et al., 2019FAROOQ, M.; HUSSAIN, M.; UL-ALLAH, S.; SIDDIQUE, K.: “Physiological and agronomic approaches for improving water-use efficiency in crop plants”, Agricultural Water Management, 219: 95-108, 2019, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2019.04.010.).

  • Proper leveling of fields (Haji, 2023HAJI, W.S.: “Adoption of technology to improve self-sufficiency in paddy plantations in Brunei: Challenges and mitigation strategies for intermediate stakeholders.”, En: IOP Conference Series: Earth and Environmental Science, Ed. IOP Publishing, vol. 1182, p. 012011, 2023, DOI: 10.1088/1755-1315/1182/1/012011, ISBN: 1755-1315.; Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.).

  • Reuse excess or drainage water (Haji, 2023HAJI, W.S.: “Adoption of technology to improve self-sufficiency in paddy plantations in Brunei: Challenges and mitigation strategies for intermediate stakeholders.”, En: IOP Conference Series: Earth and Environmental Science, Ed. IOP Publishing, vol. 1182, p. 012011, 2023, DOI: 10.1088/1755-1315/1182/1/012011, ISBN: 1755-1315.).

  • Adjust the crop planting date to make more effective use of rain (Luo et al., 2022LUO, W.; CHEN, M.; KANG, Y.; LI, W.; LI, D.; CUI, Y.; KHAN, S.; LUO, Y.: “Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall”, Agricultural Water Management, 260: 107285, 2022, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2021.107285.).

  • Direct dry sowing and delayed flooding, which eliminates water consumption for soil preparation. Strategy that in Italy implies a reduction in total variable costs of 215,50 euros per hectare, with respect to traditional cultivation and permanent flooding (Gharsallah et al., 2023GHARSALLAH, O.; RIENZNER, M.; MAYER, A.; TKACHENKO, D.; CORSI, S.; VUCITERNA, R.; ROMANI, M.; RICCIARDELLI, A.; CADEI, E.; TREVISAN, M.: “Economic, environmental, and social sustainability of Alternate Wetting and Drying irrigation for rice in northern Italy”, Frontiers in Water, 5: 1213047, 2023, ISSN: 2624-9375, DOI: 10.3389/frwa.2023.1213047.).

  • Construct and line field canals and waterways (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.), which can be done through the use of polyethylene materials (Rau et al., 2020RAU, A.; BEGMATOV, I.; KADASHEVA, Z.; RAU, G.: “Water resources management in rice irrigation systems and improvement of ecological situation in rice growing river basins”, En: IOP Conference Series: Earth and Environmental Science, Ed. IOP Publishing, vol. 614, p. 012151, 2020, DOI: 10.1088/1755-1315/614/1/012151, ISBN: 1755-1315.).

In Cuba, according to several research works, the exposure of the crop to controlled stress conditions due to water deficit, mainly in the tillering phase, has favored increased yield and decreased water consumption (Ruiz et al., 2016RUIZ-SÁNCHEZ, M.; MUÑOZ-HERNÁNDEZ, Y.; POLÓN-PÉREZ, R.: “Manejo del agua de riego en el cultivo de arroz (Oryza sativa L.) por trasplante, su efecto en el rendimiento agrícola e industrial”, Cultivos Tropicales, 37(3): 178-186, 2016, ISSN: 0258-5936.; Polón et al., 2019POLÓN-PÉREZ, R.; MIRANDA-CABALLERO, A.; DÍAZ-GARCÍA, R.; RUÍZ-SÁNCHEZ, M.; GUERRA-HERNÁNDEZ, G.; VELÁZQUEZ-PÉREZ, F.: “Effect of Water Stress on Rice Regrowth Crop. Second Part”, Revista Ciencias Técnicas Agropecuarias, 28(3): 1-6, 2019, ISSN: 1010-2760.). Other global studies show that reducing the height of the water table, as well as strengthening extension, training and demonstration programs in farmers' fields, to conserve water and increase irrigation efficiency, can be strategies that contribute to water savings (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.). Also, it is essential to provide encouragement, support and incentives to farmers to adopt these methods in practice (Wichaidist et al., 2023WICHAIDIST, B.; INTRMAN, A.; PUTTRAWUTICHAI, S.; REWTRAGULPAIBUL, C.; CHUANPONGPANICH, S.; SUKSAROJ, C.: “The effect of irrigation techniques on sustainable water management for rice cultivation system-a review”, Applied Environmental Research, 45(4), 2023, ISSN: 2287-075X, DOI: https://doi.org/10.35762/AER.2023024.). which constitutes important elements to consider when adopting alternative cropping systems that contribute to water savings.

System of Rice Intensification (SRI)

 

It consists of the application of four fundamental rules, related to each other: early, agile and solid planting; decrease in plant density; improve the soil through organic supplements; and controlled and reduced application of water (Singh et al., 2021SINGH, B.; MISHRA, S.; BISHT, D.S.; JOSHI, R.: “Growing rice with less water: Improving productivity by decreasing water demand”, En: Improving Productivity by Decreasing Water Demand. Rice Improvement, 2021, Growing Rice with Less Water, pp. 147-170, 2021, DOI: https://doi.org/10.1007/978-3-030-66530-2_5.). However, adjustments are frequently adopted to address changing soil conditions, climate designs, water control, accessibility to work, access to natural resources, and the choice to rely entirely on organic farming (Uddin y Dhar, 2020UDDIN, M.T.; DHAR, A.R.: “Assessing the impact of water-saving technologies on Boro rice farming in Bangladesh: economic and environmental perspective”, Irrigation Science, 38(2): 199-212, 2020, ISSN: 0342-7188.). This is a system fundamentally designed for sowing by transplant with seedlings between 8 and 12 days old.

SRI has demonstrated positive results in China and India and in more than 60 countries in Asia, Africa and Latin America (Kumar et al., 2023KUMAR, R.M.; CHINTALAPATI, P.; RATHOD, S.; VIDHAN SINGH, T.; KUCHI, S.; MANNAVA, P.B.; LATHA, P.C.; SOMASEKHAR, N.; BANDUMULA, N.; MADAMSETTY, S.: “Comparison of System of Rice Intensification Applications and Alternatives in India: Agronomic, Economic, Environmental, Energy, and Other Effects”, Agronomy, 13(10): 2492, 2023, ISSN: 2073-4395, DOI: . https://doi.org/10.3390/ agronomy13102492.). In general, SRI can reduce the amount of seed required from 120 to 10 kg·ha-1. Additionally, on-farm evaluations from major rice-producing countries (Bangladesh, Cambodia, China, India, Indonesia, Nepal, Sri Lanka and Vietnam) indicate that on average, it increases yield by 47 %, saves 40 % water, increases income per hectare by 68 % and reduces costs per hectare by 23 % (Mubangizi et al., 2023MUBANGIZI, A.; WANYAMA, J.; KIGGUNDU, N.; NAKAWUKA, P.: “Assessing Suitability of Irrigation Scheduling Decision Support Systems for Lowland Rice Farmers in Sub-Saharan Africa-A Review”, Agricultural Sciences, 14(2): 219-239, 2023, DOI: https://doi.org/10.4236/as.2023.142015.). Also, it can reduce greenhouse gas emissions by 21% Mubangizi et al. (2023)MUBANGIZI, A.; WANYAMA, J.; KIGGUNDU, N.; NAKAWUKA, P.: “Assessing Suitability of Irrigation Scheduling Decision Support Systems for Lowland Rice Farmers in Sub-Saharan Africa-A Review”, Agricultural Sciences, 14(2): 219-239, 2023, DOI: https://doi.org/10.4236/as.2023.142015. and its technology is more accessible to small and medium-sized producers (Valdiviezo et al., 2023VALDIVIEZO, E.W.; HERÁN, R.E.; VIVAS, M.L.: “Impacto del sistema intensivo de cultivar arroz (SICA) en el Ecuador”, Ciencia Latina Revista Científica Multidisciplinar, 7(2): 11198-11213, 2023, ISSN: 2707-2215.).

However, rice seedlings must be planted with greater care and precision, which is still done primarily manually in many countries. Additional weeding may also be necessary, so increased labor requirements have prevented its adoption in several countries (Kaur et al., 2023KAUR, P.; AGRAWAL, R.; PFEFFER, F.M.; WILLIAMS, R.; BOHIDAR, H.B.: “Hydrogels in agriculture: Prospects and challenges”, Journal of Polymers and the Environment, 31(9): 3701-3718, 2023, ISSN: 1566-2543, DOI: https://doi.org/10.1007/s10924-023-02859-1.). However, there are currently self-propelled machines for mechanized rice transplanting Miranda et al. (2022)MIRANDA-CABALLERO, A.; DÍAZ-LÓPEZ, G.; RUIZ-SÁNCHEZ, M.; DOMÍNGUEZ-VENTO, C.; PANEQUE-RONDÓN, P.: “Evaluación de la calidad del trasplante mecanizado de arroz en Cuba”, Revista Ciencias Técnicas Agropecuarias, 31(2), 2022, ISSN: 2071-0054. and mechanical weeders that can contribute to the implementation of SRI, even on large farms.

It has also been reported as a drawback for its greater diffusion that there is no custom of transplanting very small and individual seedlings, being necessary to improve the construction of seedbeds. Weed control problems due to greater transplant distances and dispensing with the use of irrigation with a constant sheet of water (Valdiviezo et al., 2023VALDIVIEZO, E.W.; HERÁN, R.E.; VIVAS, M.L.: “Impacto del sistema intensivo de cultivar arroz (SICA) en el Ecuador”, Ciencia Latina Revista Científica Multidisciplinar, 7(2): 11198-11213, 2023, ISSN: 2707-2215.).

Use of hydrogel or superabsorbent polymer

 

Hydrogel is defined as a three-dimensional polymeric network that can retain a significant amount of water within its structure and swell without dissolving in water (Guilherme et al., 2015GUILHERME, M.R.; AOUADA, F.A.; FAJARDO, A.R.; MARTINS, A.F.; PAULINO, A.T.; DAVI, M.F.T.; RUBIRA, A.F.; MUNIZ, E.C.: “Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review”, European Polymer Journal, 72: 365-385, 2015, ISSN: 0014-3057.). The particles (hydrogel or superabsorbent polymer), when in the soil, act as water reservoirs, from which plant roots can absorb water, which is why the application of hydrogel has been identified as a possible solution to increase the efficiency in water use in irrigation (Prakash et al., 2021bPRAKASH, S.; VASUDEVAN, S.; BANERJEE, A.; JOE, A.C.; REDDY, G.; KN, G.; MANI, S.K.: “Sustainable water consumption of rice (Oryza sativa L.) as influenced by superabsorbent polymer in water stressed conditions”, International Journal of Modern Agriculture, 10(1): 857-866, 2021b, ISSN: 2305-7246.).

The main advantages of using hydrogels may vary depending on soil conditions. However, these advantages include increased seed germination, increased growth of seedlings and their roots, which contributes to a denser plant population and higher yields. Hydrogels also facilitate better absorption of excess water, allowing its gradual release during periods of water stress, which delays the appearance of permanent wilting point. Additionally, hydrogels significantly increase water use efficiency by reducing water loss through evaporation and leaching, decreasing irrigation frequency, the need for crop fertilizers, and the costs associated with irrigation. Likewise, these materials can resist salt concentrations in the soil, improving their physical, chemical and biological attributes (Vedovello et al., 2024VEDOVELLO, P.; SANCHES, L.V.; DA SILVA, T.G.; MAJARON, V.F.; BORTOLETTO, S.R.; RIBEIRO, C.; PUTTI, F.F.: “An Overview of Polymeric Hydrogel Applications for Sustainable Agriculture”, Agriculture, 14(6): 840, 2024, ISSN: 2077-0472, DOI: https://doi.org/10.3390/agriculture14060840.).

Hydrogels provide versatile solutions to address water scarcity and soil degradation in agriculture (Vedovello et al., 2024VEDOVELLO, P.; SANCHES, L.V.; DA SILVA, T.G.; MAJARON, V.F.; BORTOLETTO, S.R.; RIBEIRO, C.; PUTTI, F.F.: “An Overview of Polymeric Hydrogel Applications for Sustainable Agriculture”, Agriculture, 14(6): 840, 2024, ISSN: 2077-0472, DOI: https://doi.org/10.3390/agriculture14060840.). Recent research shows that water availability in clay loam soil increased from 56 % to 125 % with the addition of the hydrogel. With an ideal application rate of 0,2 %, the hydrogel decreased the need for irrigation water by 29 % compared to bare soil (Saha et al., 2021SAHA, A.; GUPT, C.B.; SEKHARAN, S.: “Recycling natural fibre to superabsorbent hydrogel composite for conservation of irrigation water in semi-arid regions”, Waste and Biomass Valorization, 12(12): 6433-6448, 2021, ISSN: 1877-2641, DOI: https://doi.org/10.1007/s12649-021-01489-9.).

Rehman et al. (2011)REHMAN, A.; AHMAD, R.; SAFDAR, M.: “Effect of hydrogel on the performance of aerobic rice sown under different techniques.”, Plant Soil Environ, 57(7): 321-325, 2011. found that hydrogel application improved the moisture content of sandy loam soil, compared to soil without hydrogel, which increased the number of germinated seeds and achieved better crop establishment. With significant improvement of yield components (plant height, number of fertile tillers, number of grains per panicle and 1000 grain weight) and rice yield in hydrogel-amended soil, in all planting techniques. Furthermore, planting rice in beds with hydrogel amendment improved the growth and yield of aerobic rice more than other planting techniques.

Also, El-Naby et al. (2024)EL-NABY, A.; EL-GHANDOR, A.; ABOU EL-DARAG, I.; MAHMOUD, M.: “Impact of Hydrogel Polymer on Water Productivity, Weed Control Efficiency and Yield of Broadcast-Seeded Rice”, International Journal of Plant & Soil Science, 36(2): 9-27, 2024, ISSN: 2320-7035, DOI: 10.9734/IPSS/2024/v36i2435. observed that the application of hydrogel polymer conserved approximately 14,8 % of the applied water and improved rice grain yield by 16,5 %, as well as increased water productivity by 0,32 kg·m-3 to 0,48 kg·m-3 compared to the treatment without hydrogel.

In general, the effects found in rice cultivation may be due to the improvement of soil moisture content, moisture retention curve, apparent density, particle density, total porosity, pore diameter, organic matter and biological activity in the soil (Solieman et al., 2023SOLIEMAN, N.Y.; AFIFI, M.M.; ABU-ELMAGD, E.; ABOU-BAKER, N.; IBRAHIM, M.M.: “Hydro-physical, biological and economic study on simply, an environment-friendly and valuable rice straw-based hydrogel production”, Industrial Crops and Products, 201: 116850, 2023, ISSN: 0926-6690.), as well as the reduction of leaching of nutrients from the soil through runoff and infiltration (Prakash et al., 2021aPRAKASH, B.S.; VASUDEVAN, S.; MANI, S.K.; UPPALURI, S.; SUDAKAR, M.: “Drought mitigation through hydrogel application in rice (Oryza sativa L.) cultivation.”, Journal of Experimental Biology and Agricultural Sciences, 9(6): 727-733, 2021a, DOI: http://dx.doi.org/10.18006/2021.9(6).727.733.). Although studies have indicated that hydrogel in agriculture does not present risks to the environment Vedovello et al. (2024)VEDOVELLO, P.; SANCHES, L.V.; DA SILVA, T.G.; MAJARON, V.F.; BORTOLETTO, S.R.; RIBEIRO, C.; PUTTI, F.F.: “An Overview of Polymeric Hydrogel Applications for Sustainable Agriculture”, Agriculture, 14(6): 840, 2024, ISSN: 2077-0472, DOI: https://doi.org/10.3390/agriculture14060840. and its application is identified as a possible solution to increase the efficiency of water use in irrigation (Prakash et al., 2021bPRAKASH, S.; VASUDEVAN, S.; BANERJEE, A.; JOE, A.C.; REDDY, G.; KN, G.; MANI, S.K.: “Sustainable water consumption of rice (Oryza sativa L.) as influenced by superabsorbent polymer in water stressed conditions”, International Journal of Modern Agriculture, 10(1): 857-866, 2021b, ISSN: 2305-7246.). Large-scale hydrogel implementation may be hampered by issues such as cost-effectiveness and stability of many traditional agricultural practices (Kaur et al., 2023KAUR, P.; AGRAWAL, R.; PFEFFER, F.M.; WILLIAMS, R.; BOHIDAR, H.B.: “Hydrogels in agriculture: Prospects and challenges”, Journal of Polymers and the Environment, 31(9): 3701-3718, 2023, ISSN: 1566-2543, DOI: https://doi.org/10.1007/s10924-023-02859-1.). On the other hand, the use of most hydrogels is still based on synthetic polymers, which raises concern about their role in long-term applications Vedovello et al. (2024)VEDOVELLO, P.; SANCHES, L.V.; DA SILVA, T.G.; MAJARON, V.F.; BORTOLETTO, S.R.; RIBEIRO, C.; PUTTI, F.F.: “An Overview of Polymeric Hydrogel Applications for Sustainable Agriculture”, Agriculture, 14(6): 840, 2024, ISSN: 2077-0472, DOI: https://doi.org/10.3390/agriculture14060840., therefore, they should be used with caution. in rice cultivation.

Research work carried out by (Cisneros et al. (2018CISNEROS, Z.E.; CUN, G.R.; ROSALES, N.L.; GONZÁLEZ, M.D.: “Lluvia sólida, para un uso eficiente del agua. Resultados preliminares”, Ingeniería Agrícola, 8(1): 13-20, 2018, ISSN: 2227-8761., 2020CISNEROS, Z.E.; CUN, G.C.; HERRERA, P.J.; GONZÁLEZ, R.F.; CUN, R.S.; SARMIENTO, G.O.: “Efecto de los polímeros en la economía del agua.”, Revista Iberoamericana de polímeros, 21(1): 1-13, 2020., 2021CISNEROS-ZAYAS, E.; GONZÁLEZ-ROBAINA, F.; CUN-GONZÁLEZ, R.; HERRERA-PUEBLA, J.; MATOS-CREMÉ, H.; SARMIENTO-GARCÍA, O.: “Los polímeros súper absorbentes y su influencia sobre la productividad del agua en el frijol”, Revista Ingeniería Agrícola, 11(2): 10-17, 2021, ISSN: 2306-1545.) on the use of polymers in Cuban agriculture in tomato, corn and bean crops have shown that in all trials when the polymer was applied, the number of irrigations was reduced. Consequently, the total net standard was also reduced in the range of 19 and 27 %, water productivity increased with respect to the control treatment in the range of 24 and 40 %, also achieving the best benefit-cost ratios when used the polymer.

Conservation Agriculture (CA)

 

As the vulnerability of agricultural production systems to the effects of climate change increases, the world needs new farming approaches that are more resilient and productive (Carnevale et al., 2023CARNEVALE-ZAMPAOLO, F.; KASSAM, A.; FRIEDRICH, T.; PARR, A.; UPHOFF, N.: “Compatibility between Conservation Agriculture and the System of Rice Intensification”, Agronomy, 13(11): 2758, 2023, ISSN: 2073-4395, DOI: 10.20944/preprints202309.1689.v1.). CA has demonstrated global relevance for improving crop production, poverty alleviation, food security, and climate change adaptability and mitigation (Kassam et al., 2022KASSAM, A.; FRIEDRICH, T.; DERPSCH, R.: “Successful experiences and lessons from conservation agriculture worldwide”, Agronomy, 12(4): 769, 2022, ISSN: 2073-4395, DOI: https://doi.org/10.3390/agronomy12040769.). This agricultural production technology is characterized by three fundamental principles: maintaining the soil permanently covered with crop residues or plant covers at least 30 %, minimal disturbance of the soil and diversification of the species grown in rotation (Kassam et al., 2022KASSAM, A.; FRIEDRICH, T.; DERPSCH, R.: “Successful experiences and lessons from conservation agriculture worldwide”, Agronomy, 12(4): 769, 2022, ISSN: 2073-4395, DOI: https://doi.org/10.3390/agronomy12040769.).

Globally, CA is used with good results on approximately 205,4 M ha worldwide, mainly in countries such as the United States, Brazil, Argentina, Canada and Australia, and has begun to gain acceptance in rice cultivation (Kassam et al., 2022KASSAM, A.; FRIEDRICH, T.; DERPSCH, R.: “Successful experiences and lessons from conservation agriculture worldwide”, Agronomy, 12(4): 769, 2022, ISSN: 2073-4395, DOI: https://doi.org/10.3390/agronomy12040769.). However, to sustain optimal factor productivity and ecosystem services, basic CA practices must be combined with other complementary practices for the integrated management of crops, soil, nutrients, water, pests, labor, energy and land cultivation (Kassam et al., 2022KASSAM, A.; FRIEDRICH, T.; DERPSCH, R.: “Successful experiences and lessons from conservation agriculture worldwide”, Agronomy, 12(4): 769, 2022, ISSN: 2073-4395, DOI: https://doi.org/10.3390/agronomy12040769.). In this sense, the combination of CA with the application of irrigation methods and alternatives that save water could contribute to the sustainability of rice production under irrigated conditions.

In a CA system, planting is done directly into untilled soils Domínguez et al. (2021)DOMÍNGUEZ, V.C.; DE ARAÚJO, A.G.; MIRANDA, C.A.; DÍAZ, L.G.; RODRÍGUEZ, G.A.: “Machinery for direct sowing of rice in agricultural conditions”, International Journal of Food science and Agriculture, 5(3): 471-481, 2021, DOI: 10.26855/ijfsa.2021.09.018. and water can be managed by keeping the soil in mostly moist conditions without continuous flooding (Carnevale et al., 2023CARNEVALE-ZAMPAOLO, F.; KASSAM, A.; FRIEDRICH, T.; PARR, A.; UPHOFF, N.: “Compatibility between Conservation Agriculture and the System of Rice Intensification”, Agronomy, 13(11): 2758, 2023, ISSN: 2073-4395, DOI: 10.20944/preprints202309.1689.v1.). Taking into account that AC conditions improve soil health and promote root development of the crop, so plants can better tolerate water stress. Additionally, minimal soil disturbance and increased organic matter improve soil infiltration and water retention capacity, allowing longer periods between irrigation events (Singh, 2018SINGH, S.: Profitable rice farming through system of rice intensification (SRI) under conservation agriculture, Ed. ICAR Research Complex for Eastern Region, Patna, Conservation Agriculture Mitigating Climate Change Effects and Doubling Farmers’ Income, Mishra, J.S. et al., eds ed., 233-237 p., 2018.).

Maintaining moist soil conditions in AC systems can be accomplished through water management. Either with drip irrigation or frequent irrigation (surface or sprinkler), or through AWD cycles in surface irrigation (pulse flooding), can increase water use efficiency by more than 50 % and reduce emissions of CH4 by 30-70 % (Carnevale et al., 2023CARNEVALE-ZAMPAOLO, F.; KASSAM, A.; FRIEDRICH, T.; PARR, A.; UPHOFF, N.: “Compatibility between Conservation Agriculture and the System of Rice Intensification”, Agronomy, 13(11): 2758, 2023, ISSN: 2073-4395, DOI: 10.20944/preprints202309.1689.v1.).

CA has also shown good results in the cultivation of rice in permanent raised beds, without tillage, covered with biomass residues, and irrigation is applied in the furrows between the beds through flood irrigation (Sharif et al., 2014SHARIF, A.; KASSAM, A.; FRIEDRICH, T.; UPHOFF, N.; JOSHI, R.C.; SAHU, P.: “Towards the integration of the System of Rice Intensification (SRI) and Conservation Agriculture (CA) in the Indus Basin in Pakistan Punjab”, Fiji Agric. J, 54: 48-52, 2014.).This method reduces water and labor requirements for rice cultivation by 70 %, with a yield of 12 t·ha-1 in Pakistan (Sharif et al., 2014SHARIF, A.; KASSAM, A.; FRIEDRICH, T.; UPHOFF, N.; JOSHI, R.C.; SAHU, P.: “Towards the integration of the System of Rice Intensification (SRI) and Conservation Agriculture (CA) in the Indus Basin in Pakistan Punjab”, Fiji Agric. J, 54: 48-52, 2014.). A similar result has been obtained by Chappell in Arkansas, USA in a sandy loam soil, not suitable for flooded cultivation (Carnevale et al., 2023CARNEVALE-ZAMPAOLO, F.; KASSAM, A.; FRIEDRICH, T.; PARR, A.; UPHOFF, N.: “Compatibility between Conservation Agriculture and the System of Rice Intensification”, Agronomy, 13(11): 2758, 2023, ISSN: 2073-4395, DOI: 10.20944/preprints202309.1689.v1.).

On the other hand, raised bed cultivation and furrow irrigation can benefit the rotation of rice with other crops that do not tolerate flooding. Furthermore, it has been shown that no-till systems induce a reduction in the weed seed bank present in the soil (Hossain et al., 2021HOSSAIN, M.; BEGUM, M.; HASHEM, A.; RAHMAN, M.M.; HAQUE, M.E.; BELL, R.W.: “Continuous practice of Conservation Agriculture for 3-5 years in intensive rice-based cropping patterns reduces soil weed seedbank”, Agriculture, 11(9): 895, 2021, ISSN: 2077-0472, DOI: https://doi.org/10.3390/agriculture11090895.). This approach of growing rice under CA principles in raised beds and furrow irrigation is compatible with other cropping systems such as the SRI Carnevale et al. (2023)CARNEVALE-ZAMPAOLO, F.; KASSAM, A.; FRIEDRICH, T.; PARR, A.; UPHOFF, N.: “Compatibility between Conservation Agriculture and the System of Rice Intensification”, Agronomy, 13(11): 2758, 2023, ISSN: 2073-4395, DOI: 10.20944/preprints202309.1689.v1. and can enhance the application of hydrogel in agriculture.

Conclusions

 

In the world, different irrigation methods and water management alternatives are adopted in rice cultivation, all aimed at the efficient and sustainable use of the water resource as a measure to mitigate the effects of climate variability and change.

There are different irrigation methods with greater or lesser efficiency in the use of water that can be used to irrigate rice. The study carried out in this work shows that the trend is towards the combination of these methods, with different strategies that reduce the volumes of water necessary to apply for the control of weeds and the good physiological development of the rice crop.

The adoption of agricultural systems that combine the advantages of conservation agriculture with the Rice Intensification System and the application of hydrogels or super absorbent polymer, may offer promising solutions for the future of agricultural innovations and technologies that address the challenges to improve the efficiency in the use of irrigation water in rice cultivation.

References

 

ABDALLAH, A.; ALZOHEIRY, A.; BURKEY, K.: “Comparison of flooded and furrow-irrigated transplanted rice (Oryza sativa L.): Farm-level perspectives”, Journal of Irrigation and Drainage Engineering, 144(9): 04018022, 2018, ISSN: 0733-9437, DOI: https://doi.org/10.1061/(ASCE)IR.1943-4774.0001337.

AROUNA, A.; DZOMEKU, I.K.; SHAIBU, A.-G.; NURUDEEN, A.R.: “Water management for sustainable irrigation in rice (Oryza sativa L.) production: A review”, Agronomy, 13(6): 1522, 2023, ISSN: 2073-4395, DOI: https://doi.org/10.3390/agronomy13061522.

BORJA, R.A.F.; ALMEIDA, R.E.; LAGO, B.C.; TRIVELIN, P.C.; LINQUIST, B.; FAVARIN, J.L.: “Aerobic rice system improves water productivity, nitrogen recovery and crop performance in Brazilian weathered lowland soil”, Field Crops Research, 218: 59-68, 2018, ISSN: 0378-4290, DOI: https://doi.org/10.1016/j.fcr.2018.01.002.

BOUMAN, B.A.M.; LAMPAYAN, R.M.: Rice Fact Sheet-Alternate Wetting Drying (AWD), Inst. International Rice Research Institute: Los Baños, Philippines, Los Baños, Philippines, 2009.

BRITO, M.A.; BARBAT, J.M.; TIMM, L.C.; COLLAZOS--ROMO, L.: “Concenço G, Stumpf L, Gomes B. Sprinkler irrigation in lowland rice: Crop yield and its components as a function of water availability in different phenological phases”, Field Crops Research, 248: 107714, 2020, DOI: https://doi.org/10.1016/j.fcr.2020.107714.

BWIRE, D.; SAITO, H.; SIDLE, R.C.; NISHIWAKI, J.: “Water Management and Hydrological Characteristics of Rice-Paddy Catchments Under AWD Irrigation Practice: Asia and Sub-Saharan Africa”, 2023, DOI: 10.20944/preprints202311.1677.v1.

CARNEVALE-ZAMPAOLO, F.; KASSAM, A.; FRIEDRICH, T.; PARR, A.; UPHOFF, N.: “Compatibility between Conservation Agriculture and the System of Rice Intensification”, Agronomy, 13(11): 2758, 2023, ISSN: 2073-4395, DOI: 10.20944/preprints202309.1689.v1.

CARRIJO, D.R.; LUNDY, M.E.; LINQUIST, B.A.: “Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis”, Field Crops Research, 203: 173-180, 2017, ISSN: 0378-4290, DOI: https://doi.org/10.1016/j.fcr.2016.12.00.

CHAMPNESS, M.; BALLESTER, C.; HORNBUCKLE, J.: “Effect of soil moisture deficit on aerobic rice in temperate Australia”, Agronomy, 13(1): 168, 2023, ISSN: 2073-4395, DOI: https://doi.org/10.3390/agronomy13010168.

CHEN, K.; YU, S.; MA, T.; DING, J.; HE, P.; DAI, Y.; ZENG, G.: “Effects of water and nitrogen management on water productivity, nitrogen use efficiency and leaching loss in rice paddies. Water 14 (10): 1596”, Water, 14(10): 1596, 2022, DOI: https://doi.org/10.3390/w14101596.

CISNEROS, Z.E.; CUN, G.C.; HERRERA, P.J.; GONZÁLEZ, R.F.; CUN, R.S.; SARMIENTO, G.O.: “Efecto de los polímeros en la economía del agua.”, Revista Iberoamericana de polímeros, 21(1): 1-13, 2020.

CISNEROS, Z.E.; CUN, G.R.; ROSALES, N.L.; GONZÁLEZ, M.D.: “Lluvia sólida, para un uso eficiente del agua. Resultados preliminares”, Ingeniería Agrícola, 8(1): 13-20, 2018, ISSN: 2227-8761.

CISNEROS-ZAYAS, E.; GONZÁLEZ-ROBAINA, F.; CUN-GONZÁLEZ, R.; HERRERA-PUEBLA, J.; MATOS-CREMÉ, H.; SARMIENTO-GARCÍA, O.: “Los polímeros súper absorbentes y su influencia sobre la productividad del agua en el frijol”, Revista Ingeniería Agrícola, 11(2): 10-17, 2021, ISSN: 2306-1545.

DOMÍNGUEZ, V.C.; DE ARAÚJO, A.G.; MIRANDA, C.A.; DÍAZ, L.G.; RODRÍGUEZ, G.A.: “Machinery for direct sowing of rice in agricultural conditions”, International Journal of Food science and Agriculture, 5(3): 471-481, 2021, DOI: 10.26855/ijfsa.2021.09.018.

DOMÍNGUEZ, V.C.; MIRANDA, C.A.; DÍAZ, L.G.; DOMÍNGUEZ, P.D.; DUARTE, D.C.; RUIZ, S.J.; RODRÍGUEZ, A.: “Properties of a cultivated soil of irrigated rice under conservation agriculture principles”, Net Journal of Agricultural Science, 12(1): 9-16, 2024, DOI: 10.30918/NJAS.121.24.011.

EL-NABY, A.; EL-GHANDOR, A.; ABOU EL-DARAG, I.; MAHMOUD, M.: “Impact of Hydrogel Polymer on Water Productivity, Weed Control Efficiency and Yield of Broadcast-Seeded Rice”, International Journal of Plant & Soil Science, 36(2): 9-27, 2024, ISSN: 2320-7035, DOI: 10.9734/IPSS/2024/v36i2435.

FAROOQ, M.; HUSSAIN, M.; UL-ALLAH, S.; SIDDIQUE, K.: “Physiological and agronomic approaches for improving water-use efficiency in crop plants”, Agricultural Water Management, 219: 95-108, 2019, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2019.04.010.

GANGOPADHYAY, S.; CHOWDHURI, I.; DAS, N.; PAL, S.C.; MANDAL, S.: “The effects of no-tillage and conventional tillage on greenhouse gas emissions from paddy fields with various rice varieties”, Soil and Tillage Research, 232: 105772, 2023, ISSN: 0167-1987, DOI: https://doi.org/10.1016/j.still.2023.105772.

GARCÍA, L.; PARRA, L.; JIMENEZ, J.M.; LLORET, J.; LORENZ, P.: “IoT-based smart irrigation systems: An overview on the recent trends on sensors and IoT systems for irrigation in precision agriculture”, Sensors, 20(4): 1042, 2020, ISSN: 1424-8220, DOI: https://doi.org/10.3390/s20041042.

GHARSALLAH, O.; RIENZNER, M.; MAYER, A.; TKACHENKO, D.; CORSI, S.; VUCITERNA, R.; ROMANI, M.; RICCIARDELLI, A.; CADEI, E.; TREVISAN, M.: “Economic, environmental, and social sustainability of Alternate Wetting and Drying irrigation for rice in northern Italy”, Frontiers in Water, 5: 1213047, 2023, ISSN: 2624-9375, DOI: 10.3389/frwa.2023.1213047.

GONÇALVES, J.M.; FERREIRA, S.; NUNES, M.; AGRAWAL, R.; AMADOR, P.; FILIPE, O.; DUARTE, I.M.; TEIXEIRA, M.; VASCONCELOS, T.; OLIVEIRA, F.: “Developing irrigation management at district scale based on water monitoring: study on Lis valley, Portugal”, AgriEngineering, 2(1): 78-95, 2020, ISSN: 2624-7402.

GONZÁLEZ, M.; ALONSO, A.M.: “Tecnologías para ahorrar agua en el cultivo de arroz”, Nova, 14(26): 63-78, 2016, ISSN: 1794-2470.

GUILHERME, M.R.; AOUADA, F.A.; FAJARDO, A.R.; MARTINS, A.F.; PAULINO, A.T.; DAVI, M.F.T.; RUBIRA, A.F.; MUNIZ, E.C.: “Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review”, European Polymer Journal, 72: 365-385, 2015, ISSN: 0014-3057.

HAJI, W.S.: “Adoption of technology to improve self-sufficiency in paddy plantations in Brunei: Challenges and mitigation strategies for intermediate stakeholders.”, En: IOP Conference Series: Earth and Environmental Science, Ed. IOP Publishing, vol. 1182, p. 012011, 2023, DOI: 10.1088/1755-1315/1182/1/012011, ISBN: 1755-1315.

HANG, X.; DANSO, F.; LUO, J.; LIAO, D.; ZHANG, J.; ZHANG, J.: “Effects of water-saving irrigation on direct-seeding rice yield and greenhouse gas emissions in north China”, Agriculture, 12(7): 937, 2022, ISSN: 2077-0472, DOI: https://doi.org/10.3390/agriculture12070937.

HARDKE, J.; SHA, X.; BATEMAN, N.: “BR Wells Arkansas rice research studies 2020. Arkansas Agricultural Experiment Station Research Series”, 2021, Disponible en:https://scholarworks.uark.edu/aaesser/200.

HARDKE, J.T.; HARDKE, J.L.: Arkansas Furrow-Irrigated Rice, Inst. University of Arkansas System: Little Rock, AR, USA, Little Rock, AR, USA, 42 p., 2021.

HOSSAIN, M.; BEGUM, M.; HASHEM, A.; RAHMAN, M.M.; HAQUE, M.E.; BELL, R.W.: “Continuous practice of Conservation Agriculture for 3-5 years in intensive rice-based cropping patterns reduces soil weed seedbank”, Agriculture, 11(9): 895, 2021, ISSN: 2077-0472, DOI: https://doi.org/10.3390/agriculture11090895.

HUSSEIN, N.; EL ANSARY, M.; AWAD, M.; MOSTAFA, H.M.S.: “Effect of sprinkler and furrow irrigation systems on rice yield and its water productivity”, Misr Journal of Agricultural Engineering, 40(4): 319-330, 2023, ISSN: 1687-384X, DOI: 10.21608/mjae.2023.229501.1113.

IKRAMOV, R.; GAPPARO, S.; DZHUMAEV, Z.; ABDUKHOLIK, U.: “Results of application of water-saving technologies in rice farming”, En: E3S Web of Conferences, Ed. EDP Sciences, vol. 401, p. 01041, 2023, DOI: https://doi.org/10.1051/e3sconf/202340101041, ISBN: 2267-1242.

ISLAM, S.; GAIHRE, Y.K.; ISLAM, M.R.; AHMED, M.N.; AKTER, M.; SINGH, U.; SANDER, B.O.: “Mitigating greenhouse gas emissions from irrigated rice cultivation through improved fertilizer and water management”, Journal of Environmental Management, 307: 114520, 2022, ISSN: 0301-4797, DOI: https://doi.org/10.1016/j.jenvman.2022.114520.

KASSAM, A.; FRIEDRICH, T.; DERPSCH, R.: “Successful experiences and lessons from conservation agriculture worldwide”, Agronomy, 12(4): 769, 2022, ISSN: 2073-4395, DOI: https://doi.org/10.3390/agronomy12040769.

KAUR, P.; AGRAWAL, R.; PFEFFER, F.M.; WILLIAMS, R.; BOHIDAR, H.B.: “Hydrogels in agriculture: Prospects and challenges”, Journal of Polymers and the Environment, 31(9): 3701-3718, 2023, ISSN: 1566-2543, DOI: https://doi.org/10.1007/s10924-023-02859-1.

KUMAR, R.M.; CHINTALAPATI, P.; RATHOD, S.; VIDHAN SINGH, T.; KUCHI, S.; MANNAVA, P.B.; LATHA, P.C.; SOMASEKHAR, N.; BANDUMULA, N.; MADAMSETTY, S.: “Comparison of System of Rice Intensification Applications and Alternatives in India: Agronomic, Economic, Environmental, Energy, and Other Effects”, Agronomy, 13(10): 2492, 2023, ISSN: 2073-4395, DOI: . https://doi.org/10.3390/ agronomy13102492.

LEE, J.: “Evaluation of automatic irrigation system for rice cultivation and sustainable agriculture water management”, Sustainability, 14(17): 11044, 2022, ISSN: 2071-1050, DOI: https://doi.org/10.3390/su141711044.

LUO, W.; CHEN, M.; KANG, Y.; LI, W.; LI, D.; CUI, Y.; KHAN, S.; LUO, Y.: “Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall”, Agricultural Water Management, 260: 107285, 2022, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2021.107285.

LV, S.H.; DONG, Y.J.; JIANG, Y.; PADILLA, H.; LI, J.; UPHOFF, N.: “An opportunity for regenerative rice production: Combining plastic film cover and plant biomass mulch with no-till soil management to build soil carbon, curb nitrogen pollution, and maintain high-stable yield”, Agronomy, 9(10): 600, 2019, ISSN: 2073-4395.

MAJUMDAR, A.; KUMAR, V.D.P.; GIRI, B.; MOULICK, D.; SRIVASTAVA, A.K.; ROYCHOWDHURY, T.; BOSE, S.; JAISWAL, M.K.: “Combined effects of dry-wet irrigation, redox changes and microbial diversity on soil nutrient bioavailability in the rice field”, Soil and Tillage Research, 232: 105752, 2023, ISSN: 0167-1987, DOI: https://doi.org/10.1016/j.still.2023.105752.

MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.

MASSEY, J.; REBA, M.; ADVIENTO-BORBE, M.; CHIU, Y.-L.; PAYNE, G.: “Direct comparisons of four irrigation systems on a commercial rice farm: Irrigation water use efficiencies and water dynamics”, Agricultural Water Management, 266: 107606, 2022, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2022.107606.

MATSUE, Y.; TAKASAKI, K.; ABE, J.: “Water management for improvement of rice yield, appearance quality and palatability with high temperature during ripening period”, Rice Science, 28(4): 409-416, 2021, ISSN: 1672-6308, DOI: https://doi.org/10.1016/j.rsci.2021.05.011.

MERIGUETTI-PINTO, V.; BORJA-REIS, A.F.; ABREU, M.L.; REICHARDT, K.; SANTOS, D.; JONG, Q.: “Sustainable irrigation management in tropical lowland rice in Brazil”, Agricultural Water Management, 284: 108345, 2023, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2023.108345.

MERZA, N.; ATAB, H.; AL-FATLAWI, Z.; ALSHARIFI, S.: “Effect of irrigation systems on rice productivity.”, SABRAO Journal of Breeding and Genetics, 55(2): 587-597, 2023, DOI: http://doi.org/10.54910/sabrao2023.55.2.30.

MINAG: Instructivo Técnico Instructivo Técnico del cultivo del arroz, Ed. Ministerio de la Agricultura. La Habana, Cuba, La Habana, Cuba, 142 p., publisher: Ed. Instituto de Investigaciones del Arroz, Ministerio de la Agricultura …, 2020.

MIRANDA-CABALLERO, A.; DÍAZ-LÓPEZ, G.; RUIZ-SÁNCHEZ, M.; DOMÍNGUEZ-VENTO, C.; PANEQUE-RONDÓN, P.: “Evaluación de la calidad del trasplante mecanizado de arroz en Cuba”, Revista Ciencias Técnicas Agropecuarias, 31(2), 2022, ISSN: 2071-0054.

MONACO, F.; SALI, G.; BEN HASSEN, M.; FACCHI, A.; ROMANI, M.; VALÈ, G.: “Water management options for rice cultivation in a temperate area: a multi-objective model to explore economic and water saving results”, Water, 8(8): 336, 2016, ISSN: 2073-4441, DOI: 10.3390/w8080336.

MUBANGIZI, A.; WANYAMA, J.; KIGGUNDU, N.; NAKAWUKA, P.: “Assessing Suitability of Irrigation Scheduling Decision Support Systems for Lowland Rice Farmers in Sub-Saharan Africa-A Review”, Agricultural Sciences, 14(2): 219-239, 2023, DOI: https://doi.org/10.4236/as.2023.142015.

PADMANABHAN, S.: “Drip irrigation technology for rice cultivation for enhancing rice productivity and reducing water consumption”, En: Proceedings of the 3rd World Irrigation Forum (WIF3), Bali, Indonesia, pp. 1-7, 2019.

PARTHASARATHI, T.; VANITHA, K.; MOHANDASS, S.; VERED, E.: “Evaluation of drip irrigation system for water productivity and yield of rice”, Agronomy Journal, 110(6): 2378-2389, 2018, ISSN: 0002-1962, DOI: https://doi.org/10.2134/AGRONJ2018.01.0002.

PEÑA, D.; MARTÍN, C.; FERNÁNDEZ-RODRÍGUEZ, D.; TERRÓN-SÁNCHEZ, J.; VICENTE, L.A.; ALBARRÁN, A.; RATO-NUNES, J.M.; LÓPEZ-PIÑEIRO, A.: “Medium-Term Effects of Sprinkler Irrigation Combined with a Single Compost Application on Water and Rice Productivity and Food Safety”, Plants, 12(3): 456, 2023, ISSN: 2223-7747, DOI: https://doi.org/10.3390/plants12030456.

PHAM, V.B.; DIEP, T.T.; FOCK, K.; NGUYEN, T.S.: “Using the Internet of Things to promote alternate wetting and drying irrigation for rice in Vietnam’s Mekong Delta”, Agronomy for Sustainable Development, 41(3): 43, 2021, ISSN: 1774-0746, DOI: https://doi.org/10.1007/s13593-021-00705-z.

PINTO, M.A.B.; PARFITT, J.M.B.; TIMM, L.C.; FARIA, L.C.; CONCENÇO, G.; STUMPF, L.; NÖRENBERG, B.G.: “Sprinkler irrigation in lowland rice: Crop yield and its components as a function of water availability in different phenological phases”, Field Crops Research, 248: 107714, 2020, ISSN: 0378-4290.

POLÓN-PÉREZ, R.; MIRANDA-CABALLERO, A.; DÍAZ-GARCÍA, R.; RUÍZ-SÁNCHEZ, M.; GUERRA-HERNÁNDEZ, G.; VELÁZQUEZ-PÉREZ, F.: “Effect of Water Stress on Rice Regrowth Crop. Second Part”, Revista Ciencias Técnicas Agropecuarias, 28(3): 1-6, 2019, ISSN: 1010-2760.

PRAKASH, B.S.; VASUDEVAN, S.; MANI, S.K.; UPPALURI, S.; SUDAKAR, M.: “Drought mitigation through hydrogel application in rice (Oryza sativa L.) cultivation.”, Journal of Experimental Biology and Agricultural Sciences, 9(6): 727-733, 2021a, DOI: http://dx.doi.org/10.18006/2021.9(6).727.733.

PRAKASH, S.; VASUDEVAN, S.; BANERJEE, A.; JOE, A.C.; REDDY, G.; KN, G.; MANI, S.K.: “Sustainable water consumption of rice (Oryza sativa L.) as influenced by superabsorbent polymer in water stressed conditions”, International Journal of Modern Agriculture, 10(1): 857-866, 2021b, ISSN: 2305-7246.

RAO, K.; GANGWAR, S.; KESHRI, R.; CHOURASIA, L.; BAJPAI, A.; SONI, K.: “Effects of drip irrigation system for enhancing rice (Oryza sativa L.) yield under system of rice intensification management.”, Applied Ecology & Environmental Research, 15(4): 487-495, 2017, ISSN: 1589-1623, DOI: http://dx.doi.org/10.15666/aeer/1504_487495.

RATO-NUNES, J.M.; MARTÍN-FRANCO, C.; PEÑA, D.; TERRÓN-SÁNCHEZ, J.; VICENTE, L.A.; FERNÁNDEZ-RODRÍGUEZ, D.; ALBARRÁN, A.; LÓPEZ-PIÑEIRO, A.: “Combined use of biochar and sprinkler irrigation may enhance rice productivity in water-stressed regions”, Annals of Agricultural Sciences, 68(1): 48-59, 2023, ISSN: 0570-1783, DOI: http://doi.org/10.1016/j.aoas.2023.05.002.

RAU, A.; BEGMATOV, I.; KADASHEVA, Z.; RAU, G.: “Water resources management in rice irrigation systems and improvement of ecological situation in rice growing river basins”, En: IOP Conference Series: Earth and Environmental Science, Ed. IOP Publishing, vol. 614, p. 012151, 2020, DOI: 10.1088/1755-1315/614/1/012151, ISBN: 1755-1315.

REHMAN, A.; AHMAD, R.; SAFDAR, M.: “Effect of hydrogel on the performance of aerobic rice sown under different techniques.”, Plant Soil Environ, 57(7): 321-325, 2011.

RUIZ-SÁNCHEZ, M.; MUÑOZ-HERNÁNDEZ, Y.; POLÓN-PÉREZ, R.: “Manejo del agua de riego en el cultivo de arroz (Oryza sativa L.) por trasplante, su efecto en el rendimiento agrícola e industrial”, Cultivos Tropicales, 37(3): 178-186, 2016, ISSN: 0258-5936.

SAHA, A.; GUPT, C.B.; SEKHARAN, S.: “Recycling natural fibre to superabsorbent hydrogel composite for conservation of irrigation water in semi-arid regions”, Waste and Biomass Valorization, 12(12): 6433-6448, 2021, ISSN: 1877-2641, DOI: https://doi.org/10.1007/s12649-021-01489-9.

SAHARAWAT, Y.S.; GILL, M.; GATHALA, M.: Conservation agriculture in south Asia, Ed. Burleigh Dodds, Cambridge, UK, Kassam, A ed., vol. Advances in Conservation Agriculture, 3, Cambridge, UK, publisher: Cambridge University Press, 2022.

SAIKUMAR, G.; JINSY, V.; SUMESH, K.: “Agro-economic evaluation of aerobic rice+ legume intercropping system under varying levels of nitrogen.”, The Mysore Journal of Agricultural Sciences, 57(3): 146-152, 2023.

SASMITA, P.; AGUSTIANI, N.; MARGARET, S.; ARDHIYANTI, S.D.; SUPRIHANTO, S.; NUGRAHA, Y.; SUHARTINI, S.: “Drip irrigation technology performance on rice cultivation”, Jurnal Teknik Pertanian Lampung, 11(1): 130-145, 2022, DOI: http://dx.doi.org/10.23960/jtep-l.v11.i1.130-145.

SHARIF, A.: “Technical adaptations for mechanized SRI production to achieve water saving and increased profitability in Punjab, Pakistan”, Paddy and Water Environment, 9(1): 111-119, 2011, ISSN: 1611-2490, DOI: https://doi.org/10.1016/j.agwat.2023.108345.

SHARIF, A.; KASSAM, A.; FRIEDRICH, T.; UPHOFF, N.; JOSHI, R.C.; SAHU, P.: “Towards the integration of the System of Rice Intensification (SRI) and Conservation Agriculture (CA) in the Indus Basin in Pakistan Punjab”, Fiji Agric. J, 54: 48-52, 2014.

SHUKLA, M.K.; SHUKLA, A.K.; SINGH, S.: “Direct Seeded Rice: An Alternative Rice Establishment Method Over Conventional Transplanted Puddled Rice”, Recent Advances in Biology and Medicine, 7(1): 1-6, 2021, ISSN: 2378-654X.

SINGH, A.; CHAKRABORTI, M.: “Water and nitrogen use efficiency in SRI through AWD and LCC”, The Indian Journal of Agricultural Sciences, 89(12): 2059-2063, 2019, ISSN: 2394-3319, DOI: https://doi.org/10.56093/ijas.v89i12.96274.

SINGH, B.; MISHRA, S.; BISHT, D.S.; JOSHI, R.: “Growing rice with less water: Improving productivity by decreasing water demand”, En: Improving Productivity by Decreasing Water Demand. Rice Improvement, 2021, Growing Rice with Less Water, pp. 147-170, 2021, DOI: https://doi.org/10.1007/978-3-030-66530-2_5.

SINGH, S.: Profitable rice farming through system of rice intensification (SRI) under conservation agriculture, Ed. ICAR Research Complex for Eastern Region, Patna, Conservation Agriculture Mitigating Climate Change Effects and Doubling Farmers’ Income, Mishra, J.S. et al., eds ed., 233-237 p., 2018.

SOLIEMAN, N.Y.; AFIFI, M.M.; ABU-ELMAGD, E.; ABOU-BAKER, N.; IBRAHIM, M.M.: “Hydro-physical, biological and economic study on simply, an environment-friendly and valuable rice straw-based hydrogel production”, Industrial Crops and Products, 201: 116850, 2023, ISSN: 0926-6690.

SOMAN, P.: “Drip Irrigation and Fertigation Technology for Rice Production Leading to Higher Water Productivity”, International Journal of Water Resources and Arid Environments, 10(2): 70-77, 2021, ISSN: 2079-7079.

SPANU, A.; VALENTE, M.; LANGASCO, I.; LEARDI, R.; ORLANDONI, A.M.; CIULU, M.; DEROMA, M.A.; SPANO, N.; BARRACU, F.; PILO, M.I.: “Effect of the irrigation method and genotype on the bioaccumulation of toxic and trace elements in rice”, Science of The Total Environment, 748: 142484, 2020, ISSN: 0048-9697, DOI: http://doi.org/10.1016/j.scitotenv.2020.142484.

STEVENS, G.; RHINE, M.; HEISER, J.: “Rice production with furrow irrigation in the Mississippi river delta region of the USA”, Rice Crop: Current Developments; Shah, F., Khan, ZH, Iqbal, A., Eds, : 69-82, 2018.

SURENDRAN, U.; RAJA, P.; JAYAKUMAR, M.; SUBRAMONIAM, S.R.: “Use of efficient water saving techniques for production of rice in India under climate change scenario: A critical review”, Journal of Cleaner Production, 309: 127272, 2021, ISSN: 0959-6526, DOI: https://doi.org/10.1016/j.jclepro.2021.127272.

UDDIN, M.T.; DHAR, A.R.: “Assessing the impact of water-saving technologies on Boro rice farming in Bangladesh: economic and environmental perspective”, Irrigation Science, 38(2): 199-212, 2020, ISSN: 0342-7188.

VALDIVIEZO, E.W.; HERÁN, R.E.; VIVAS, M.L.: “Impacto del sistema intensivo de cultivar arroz (SICA) en el Ecuador”, Ciencia Latina Revista Científica Multidisciplinar, 7(2): 11198-11213, 2023, ISSN: 2707-2215.

VEDOVELLO, P.; SANCHES, L.V.; DA SILVA, T.G.; MAJARON, V.F.; BORTOLETTO, S.R.; RIBEIRO, C.; PUTTI, F.F.: “An Overview of Polymeric Hydrogel Applications for Sustainable Agriculture”, Agriculture, 14(6): 840, 2024, ISSN: 2077-0472, DOI: https://doi.org/10.3390/agriculture14060840.

VIJAYAKUMAR, S.; CHOUDHARY, A.K.; DEIVEEGAN, M.; THIRUMALAIKUMAR, R.; KUMAR, R.M.: “Android based mobile application for rice crop management”, Chronicle of Bioresource Management, 6(Mar, 1): 019-024, 2022a.

VIJAYAKUMAR, S.; KUMAR, D.; RAMESH, K.; JINGER, D.; RAJPOOT, S.K.: “Effect of Potassium fertilization on water productivity, irrigation water use efficiency, and grain quality under direct seeded rice-wheat cropping system”, J. Plant Nutr., 45: 2023-2038, 2022b.

WEI, Q.; XU, J.; SUN, L.; WANG, H.; LV, Y.; LI, Y.; HAMEED, F.: “Effects of straw returning on rice growth and yield under water-saving irrigation”, Chilean journal of agricultural research, 79(1): 66-74, 2019, ISSN: 0718-5839, DOI: https://doi.org/10.4067/S0718-58392019000100066.

WICHAIDIST, B.; INTRMAN, A.; PUTTRAWUTICHAI, S.; REWTRAGULPAIBUL, C.; CHUANPONGPANICH, S.; SUKSAROJ, C.: “The effect of irrigation techniques on sustainable water management for rice cultivation system-a review”, Applied Environmental Research, 45(4), 2023, ISSN: 2287-075X, DOI: https://doi.org/10.35762/AER.2023024.

ZENG, Y.-F.; CHEN, C.-T.; LIN, G.-F.: “Practical application of an intelligent irrigation system to rice paddies in Taiwan”, Agricultural Water Management, 280: 108216, 2023, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2023.108216.

ZHANG, W.; TIAN, Y.; FENG, Y.; LIU, J.; ZHENG, C.: “Water-Saving Potential of Different Agricultural Management Practices in an Arid River Basin”, Water, 14(13): 2072, 2022, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w14132072.


Revista Ciencias Técnicas Agropecuarias Vol. 34, January-December 2025, ISSN: 2071-0054
 
REVISIÓN

Enfoques para la gestión y uso eficiente del agua en el cultivo de arroz

 

iDCalixto Domínguez-VentoIInstituto de Investigaciones de Ingeniería Agrícola (IAgric), Boyeros, La Habana, Cuba.*✉:calixtodominguez1986@gmail.com

iDEnrique Cisneros-ZayasIInstituto de Investigaciones de Ingeniería Agrícola (IAgric), Boyeros, La Habana, Cuba.

iDJulián Herrera-PueblaIInstituto de Investigaciones de Ingeniería Agrícola (IAgric), Boyeros, La Habana, Cuba.

iDMichel Ruiz-SánchezIIUnidad Científico Tecnológica de Base Los Palacios (UCTB-LP), Los Palacios, Pinar del Río, Cuba.

iDAlexander Miranda-CaballeroIIIInstituto de Investigaciones de Ciencias Agrícolas (INCA), San José de las Lajas, Mayabeque, Cuba.

iDPedro Paneque-RondónIVUniversidad Agraria de La Habana (UNAH), San José de las Lajas, Mayabeque, Cuba.

iDRafael Amado Martin-FernándezIInstituto de Investigaciones de Ingeniería Agrícola (IAgric), Boyeros, La Habana, Cuba.


IInstituto de Investigaciones de Ingeniería Agrícola (IAgric), Boyeros, La Habana, Cuba.

IIUnidad Científico Tecnológica de Base Los Palacios (UCTB-LP), Los Palacios, Pinar del Río, Cuba.

IIIInstituto de Investigaciones de Ciencias Agrícolas (INCA), San José de las Lajas, Mayabeque, Cuba.

IVUniversidad Agraria de La Habana (UNAH), San José de las Lajas, Mayabeque, Cuba.

 

*Autor para correspondencia: Calixto Domínguez-Vento, e-mail: calixtodominguez1986@gmail.com

Resumen

En el contexto actual de cambio e inestabilidad climática donde la disponibilidad de agua se reduce con el paso de los años, el sector arrocero enfrenta el desafío de hacer un uso racional del agua, a la vez que necesita mitigar los efectos de la producción arrocera ante un clima cambiante. En este sentido, son de particular interés métodos de riego que ahorren agua y prácticas agrícolas climáticamente inteligentes como la agricultura de conservación que ha comenzado a ganar aceptación en el cultivo de arroz. El presente trabajo tiene como objetivo revisar los principales enfoques para la gestión y uso eficiente del agua en el cultivo de arroz, informados en la literatura científica especializada.

Palabras clave: 
agricultura, agua, sostenibilidad, cambio climático, manejo del riego

Introducción

 

El arroz es el alimento básico del 75 % de la población mundial y uno de los cultivos más importantes en el mundo (Vijayakumar et al., 2022aVIJAYAKUMAR, S.; CHOUDHARY, A.K.; DEIVEEGAN, M.; THIRUMALAIKUMAR, R.; KUMAR, R.M.: “Android based mobile application for rice crop management”, Chronicle of Bioresource Management, 6(Mar, 1): 019-024, 2022a.; Gharsallah et al., 2023GHARSALLAH, O.; RIENZNER, M.; MAYER, A.; TKACHENKO, D.; CORSI, S.; VUCITERNA, R.; ROMANI, M.; RICCIARDELLI, A.; CADEI, E.; TREVISAN, M.: “Economic, environmental, and social sustainability of Alternate Wetting and Drying irrigation for rice in northern Italy”, Frontiers in Water, 5: 1213047, 2023, ISSN: 2624-9375, DOI: 10.3389/frwa.2023.1213047.). Pero en la mayoría de los países el arroz se cultiva en condiciones de inundación, lo que implica la utilización de grandes volúmenes de agua y la emisión de gases de efecto invernadero (Gharsallah et al., 2023GHARSALLAH, O.; RIENZNER, M.; MAYER, A.; TKACHENKO, D.; CORSI, S.; VUCITERNA, R.; ROMANI, M.; RICCIARDELLI, A.; CADEI, E.; TREVISAN, M.: “Economic, environmental, and social sustainability of Alternate Wetting and Drying irrigation for rice in northern Italy”, Frontiers in Water, 5: 1213047, 2023, ISSN: 2624-9375, DOI: 10.3389/frwa.2023.1213047.; Meriguetti et al., 2023MERIGUETTI-PINTO, V.; BORJA-REIS, A.F.; ABREU, M.L.; REICHARDT, K.; SANTOS, D.; JONG, Q.: “Sustainable irrigation management in tropical lowland rice in Brazil”, Agricultural Water Management, 284: 108345, 2023, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2023.108345.). Se estima que el cultivo de arroz consume el 43% del agua de riego utilizada mundialmente (Majumdar et al., 2023MAJUMDAR, A.; KUMAR, V.D.P.; GIRI, B.; MOULICK, D.; SRIVASTAVA, A.K.; ROYCHOWDHURY, T.; BOSE, S.; JAISWAL, M.K.: “Combined effects of dry-wet irrigation, redox changes and microbial diversity on soil nutrient bioavailability in the rice field”, Soil and Tillage Research, 232: 105752, 2023, ISSN: 0167-1987, DOI: https://doi.org/10.1016/j.still.2023.105752.). Sin embargo, la creciente escases de agua en los países productores de arroz constituye un motivo de preocupación y amenaza la sostenibilidad de la producción arrocera en condiciones de riego Shukla et al. (2021)SHUKLA, M.K.; SHUKLA, A.K.; SINGH, S.: “Direct Seeded Rice: An Alternative Rice Establishment Method Over Conventional Transplanted Puddled Rice”, Recent Advances in Biology and Medicine, 7(1): 1-6, 2021, ISSN: 2378-654X., por lo que, en las últimas décadas, los investigadores se han enfocado en la búsqueda de nuevos métodos de riego que ahorren agua sin afectar significativamente la producción arrocera.

En Cuba, el cultivo del arroz históricamente ha dependido del método de riego por inundación (que consume grandes volúmenes de agua), lo que lo convierte en el mayor consumidor de agua en el sector agrícola. Además, ha establecido una fuerte dependencia de la inundación como método para el control de malezas. Pero las condiciones actuales de cambio climático, la degradación de los suelos expresada en bajos contenidos de materia orgánica, nitrógeno, fosforo y potasio, el cambio de los patrones climáticos (precipitaciones intensas en algunos periodos y sequias prolongadas), y la escasez de recursos, obligan a los agricultores a implementar métodos de cultivo rentables que contribuyan a la mejora y conservación de suelos y a la vez ahorren agua.

En respuesta a estos desafíos, internacionalmente se han implementado varios sistemas de cultivo en los que no se inundan los campos y se emplea menos agua de riego, a la vez que disminuyen los efectos negativos de la producción arrocera en el cambio climático (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.). Por ejemplo, el riego alternando períodos de inundación y secado Gharsallah et al. (2023)GHARSALLAH, O.; RIENZNER, M.; MAYER, A.; TKACHENKO, D.; CORSI, S.; VUCITERNA, R.; ROMANI, M.; RICCIARDELLI, A.; CADEI, E.; TREVISAN, M.: “Economic, environmental, and social sustainability of Alternate Wetting and Drying irrigation for rice in northern Italy”, Frontiers in Water, 5: 1213047, 2023, ISSN: 2624-9375, DOI: 10.3389/frwa.2023.1213047. y el cultivo sin labranza aplicando principio de AC Gangopadhyay et al. (2023)GANGOPADHYAY, S.; CHOWDHURI, I.; DAS, N.; PAL, S.C.; MANDAL, S.: “The effects of no-tillage and conventional tillage on greenhouse gas emissions from paddy fields with various rice varieties”, Soil and Tillage Research, 232: 105772, 2023, ISSN: 0167-1987, DOI: https://doi.org/10.1016/j.still.2023.105772., entre otros. Sin embargo, cada método tiene sus particularidades, que pueden constituir ventajas o desventajas en función de las condiciones locales de producción, la disponibilidad de mano de obra y factores como el tipo de suelo, características de los campos (topografía o nivelación) y dimensiones de las fincas. El presente trabajo tiene como objetivo revisar los principales enfoques para la gestión y uso eficiente del agua en el cultivo de arroz, informados en la literatura científica especializada.

Desarrollo del tema

 

El cultivo de arroz enfrenta actualmente problemas como la escasez de agua y la degradación de la salud del suelo (Arouna et al., 2023AROUNA, A.; DZOMEKU, I.K.; SHAIBU, A.-G.; NURUDEEN, A.R.: “Water management for sustainable irrigation in rice (Oryza sativa L.) production: A review”, Agronomy, 13(6): 1522, 2023, ISSN: 2073-4395, DOI: https://doi.org/10.3390/agronomy13061522.; Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.). Factores asociados al método tradicional de inundar continuamente los campos durante todo el ciclo del cultivo, siendo la estrategia de riego más practicada en todo el mundo para la producción de arroz (Luo et al., 2022LUO, W.; CHEN, M.; KANG, Y.; LI, W.; LI, D.; CUI, Y.; KHAN, S.; LUO, Y.: “Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall”, Agricultural Water Management, 260: 107285, 2022, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2021.107285.; Meriguetti et al., 2023MERIGUETTI-PINTO, V.; BORJA-REIS, A.F.; ABREU, M.L.; REICHARDT, K.; SANTOS, D.; JONG, Q.: “Sustainable irrigation management in tropical lowland rice in Brazil”, Agricultural Water Management, 284: 108345, 2023, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2023.108345.). Así como, la labranza tradicional basada en el uso de implementos que rompen y descomponen la estructura del suelo, particularmente con suelos húmedos (Domínguez et al., 2024DOMÍNGUEZ, V.C.; MIRANDA, C.A.; DÍAZ, L.G.; DOMÍNGUEZ, P.D.; DUARTE, D.C.; RUIZ, S.J.; RODRÍGUEZ, A.: “Properties of a cultivated soil of irrigated rice under conservation agriculture principles”, Net Journal of Agricultural Science, 12(1): 9-16, 2024, DOI: 10.30918/NJAS.121.24.011.). En este contexto, la aplicación de nuevos enfoques de cultivo en los que no se inunden los campos de forma permanente y el mínimo disturbio del suelo como parte de la AC, surgen como un paso importante para el uso eficiente del agua, la conservación del suelo y el medio ambiente.

La demanda de agua de riego en el cultivo de arroz está influenciada, entre otros factores, por las prácticas de gestión del riego como: los métodos de riego, regímenes de riego, programación del riego, tecnologías de riego, etc.), y prácticas agronómicas como la preparación del suelo y patrones de esquemas de riego (Arouna et al., 2023AROUNA, A.; DZOMEKU, I.K.; SHAIBU, A.-G.; NURUDEEN, A.R.: “Water management for sustainable irrigation in rice (Oryza sativa L.) production: A review”, Agronomy, 13(6): 1522, 2023, ISSN: 2073-4395, DOI: https://doi.org/10.3390/agronomy13061522.). Por lo tanto, la demanda de agua de riego se puede reducir mediante la adopción de métodos de riego que ahorran agua y la implementación de prácticas agronómicas que contribuyan al uso eficiente del agua como puede ser la AC. En este sentido, Arouna et al. (2023)AROUNA, A.; DZOMEKU, I.K.; SHAIBU, A.-G.; NURUDEEN, A.R.: “Water management for sustainable irrigation in rice (Oryza sativa L.) production: A review”, Agronomy, 13(6): 1522, 2023, ISSN: 2073-4395, DOI: https://doi.org/10.3390/agronomy13061522. plantean que las tecnologías de ahorro del agua para el cultivo del arroz pueden clasificarse en tres grupos: sistemas de riego que ahorran agua, métodos de riego que ahorran agua y prácticas agronómicas que ahorran agua.

Métodos de riego que ahorran agua en la producción de arroz

 

El método de riego superficial es el más utilizados en el mundo (Mubangizi et al., 2023MUBANGIZI, A.; WANYAMA, J.; KIGGUNDU, N.; NAKAWUKA, P.: “Assessing Suitability of Irrigation Scheduling Decision Support Systems for Lowland Rice Farmers in Sub-Saharan Africa-A Review”, Agricultural Sciences, 14(2): 219-239, 2023, DOI: https://doi.org/10.4236/as.2023.142015.; Meriguetti et al., 2023MERIGUETTI-PINTO, V.; BORJA-REIS, A.F.; ABREU, M.L.; REICHARDT, K.; SANTOS, D.; JONG, Q.: “Sustainable irrigation management in tropical lowland rice in Brazil”, Agricultural Water Management, 284: 108345, 2023, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2023.108345.). En este método el riego superficial, incluye el riego por cuenca, el riego por bordes y el riego por surcos, se caracteriza por un riego ineficiente que provoca pérdidas de agua. El riego por aspersión y el riego por goteo son una mejor alternativa que el riego superficial por inundación para lograr ahorrar agua de riego e incrementar la productividad agronómica del agua, incluso con un rendimiento agrícola mayor (Merza et al., 2023MERZA, N.; ATAB, H.; AL-FATLAWI, Z.; ALSHARIFI, S.: “Effect of irrigation systems on rice productivity.”, SABRAO Journal of Breeding and Genetics, 55(2): 587-597, 2023, DOI: http://doi.org/10.54910/sabrao2023.55.2.30.; Saikumar et al., 2023SAIKUMAR, G.; JINSY, V.; SUMESH, K.: “Agro-economic evaluation of aerobic rice+ legume intercropping system under varying levels of nitrogen.”, The Mysore Journal of Agricultural Sciences, 57(3): 146-152, 2023.).

Modernización del riego superficial

 

En Cuba, donde los sistemas de riego del cultivo del arroz fueron diseñados superficiales (sistemas de riego ingeniero, semi-ingeniero y tradicionales), no parece económico introducir sistemas de riego especializados más costosos o transformar los sistemas de riego existentes. Una opción, para mejorar la eficiencia en la conducción del agua, pudiera ser la utilización de politubos de un diámetro determinado que se extienden a lo largo del campo y de manera espaciada presentan orificios para la salida de un caudal establecido.

Este método, es usado en el 32 % de las áreas arroceras de Arkansas, con ahorros del 30 % del volumen de agua Hardke et al. (2021)HARDKE, J.; SHA, X.; BATEMAN, N.: “BR Wells Arkansas rice research studies 2020. Arkansas Agricultural Experiment Station Research Series”, 2021, Disponible en:https://scholarworks.uark.edu/aaesser/200. y en Mississippi, ha permitido disminuir el volumen de agua usada tradicionalmente en un 22 % (Massey et al., 2022MASSEY, J.; REBA, M.; ADVIENTO-BORBE, M.; CHIU, Y.-L.; PAYNE, G.: “Direct comparisons of four irrigation systems on a commercial rice farm: Irrigation water use efficiencies and water dynamics”, Agricultural Water Management, 266: 107606, 2022, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2022.107606.). Igualmente, en Uruguay, se han informado ahorros hasta de un 50 % en el volumen de agua y un 30 % en costo de mano de obra (González y Alonso, 2016GONZÁLEZ, M.; ALONSO, A.M.: “Tecnologías para ahorrar agua en el cultivo de arroz”, Nova, 14(26): 63-78, 2016, ISSN: 1794-2470.). También, en Cuba se ha probado con buen resultado en la provincia de Camagüey y en el municipio Los Palacios, en Pinar del Río.

Otra alternativa, pudiera ser la adopción del riego por surcos, práctica que en los últimos años ha aumentado significativamente en EEUU Hardke y Hardke (2021)HARDKE, J.T.; HARDKE, J.L.: Arkansas Furrow-Irrigated Rice, Inst. University of Arkansas System: Little Rock, AR, USA, Little Rock, AR, USA, 42 p., 2021. y logra reducir significativamente el consumo de agua y mano de obra, en comparación con la inundación tradicional (Stevens et al., 2018STEVENS, G.; RHINE, M.; HEISER, J.: “Rice production with furrow irrigation in the Mississippi river delta region of the USA”, Rice Crop: Current Developments; Shah, F., Khan, ZH, Iqbal, A., Eds, : 69-82, 2018.). Hussein et al. (2023)HUSSEIN, N.; EL ANSARY, M.; AWAD, M.; MOSTAFA, H.M.S.: “Effect of sprinkler and furrow irrigation systems on rice yield and its water productivity”, Misr Journal of Agricultural Engineering, 40(4): 319-330, 2023, ISSN: 1687-384X, DOI: 10.21608/mjae.2023.229501.1113. informaron que la técnica de riego por surcos superó la técnica de riego por inundación continua, reduciendo el uso de agua en 33 % y aumentando el rendimiento de grano en 12,37 %. Resultados similares obtuvieron Massey et al. (2022)MASSEY, J.; REBA, M.; ADVIENTO-BORBE, M.; CHIU, Y.-L.; PAYNE, G.: “Direct comparisons of four irrigation systems on a commercial rice farm: Irrigation water use efficiencies and water dynamics”, Agricultural Water Management, 266: 107606, 2022, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2022.107606. con un ahorro del 23 % del volumen de agua. Abdallah et al. (2018)ABDALLAH, A.; ALZOHEIRY, A.; BURKEY, K.: “Comparison of flooded and furrow-irrigated transplanted rice (Oryza sativa L.): Farm-level perspectives”, Journal of Irrigation and Drainage Engineering, 144(9): 04018022, 2018, ISSN: 0733-9437, DOI: https://doi.org/10.1061/(ASCE)IR.1943-4774.0001337., informaron una reducción significativa del consumo de agua e incremento del rendimiento en arroz trasplantado, y concluyeron que el riego por surcos constituye una buena opción para optimizar el uso de agua en sistemas de riego superficial en arroz. También, Hang et al. (2022)HANG, X.; DANSO, F.; LUO, J.; LIAO, D.; ZHANG, J.; ZHANG, J.: “Effects of water-saving irrigation on direct-seeding rice yield and greenhouse gas emissions in north China”, Agriculture, 12(7): 937, 2022, ISSN: 2077-0472, DOI: https://doi.org/10.3390/agriculture12070937. demostraron que la adopción del riego por surcos contribuye a la mayor productividad del agua y rendimiento del cultivo del arroz, por lo que recomendaron su implementación para una producción sostenible de arroz que ahorre agua en el norte de China.

Por otro lado, Carnevale et al. (2023)CARNEVALE-ZAMPAOLO, F.; KASSAM, A.; FRIEDRICH, T.; PARR, A.; UPHOFF, N.: “Compatibility between Conservation Agriculture and the System of Rice Intensification”, Agronomy, 13(11): 2758, 2023, ISSN: 2073-4395, DOI: 10.20944/preprints202309.1689.v1. sugieren que el riego por surcos en lechos elevados es la mejor forma de cultivar el arroz y otros cultivos en condiciones aeróbicas, en tierras bajas con suelo arcilloso pesado. Este método es compatible con los principios de AC de mínima alteración del suelo y mantenimiento de una cobertura permanente de biomasa del suelo . Al respecto, se ha comprobado que el suministro de agua a través de surcos laterales al cultivo en lechos elevados en condiciones de AC, ahorra agua de riego Sharif et al. (2014)SHARIF, A.; KASSAM, A.; FRIEDRICH, T.; UPHOFF, N.; JOSHI, R.C.; SAHU, P.: “Towards the integration of the System of Rice Intensification (SRI) and Conservation Agriculture (CA) in the Indus Basin in Pakistan Punjab”, Fiji Agric. J, 54: 48-52, 2014. y disminuye el consumo de portadores energéticos (Saharawat et al., 2022SAHARAWAT, Y.S.; GILL, M.; GATHALA, M.: Conservation agriculture in south Asia, Ed. Burleigh Dodds, Cambridge, UK, Kassam, A ed., vol. Advances in Conservation Agriculture, 3, Cambridge, UK, publisher: Cambridge University Press, 2022.). Además, cuando hay exceso de agua de lluvia en el campo, ésta puede ser drenada por los surcos para evitar inundaciones no deseadas y sus consecuencias (Lv et al., 2019LV, S.H.; DONG, Y.J.; JIANG, Y.; PADILLA, H.; LI, J.; UPHOFF, N.: “An opportunity for regenerative rice production: Combining plastic film cover and plant biomass mulch with no-till soil management to build soil carbon, curb nitrogen pollution, and maintain high-stable yield”, Agronomy, 9(10): 600, 2019, ISSN: 2073-4395.).

Riego por aspersión

 

Los sistemas de riego por aspersión mecanizados (pivote central y de movimiento lateral mecánico o avance frontal) están ganando atención entre los agricultores de varios países, debido a la fácil gestión del riego, combinada con una mayor eficiencia en el uso del agua y una mayor productividad (Brito et al., 2020BRITO, M.A.; BARBAT, J.M.; TIMM, L.C.; COLLAZOS--ROMO, L.: “Concenço G, Stumpf L, Gomes B. Sprinkler irrigation in lowland rice: Crop yield and its components as a function of water availability in different phenological phases”, Field Crops Research, 248: 107714, 2020, DOI: https://doi.org/10.1016/j.fcr.2020.107714.; Singh et al., 2021SINGH, B.; MISHRA, S.; BISHT, D.S.; JOSHI, R.: “Growing rice with less water: Improving productivity by decreasing water demand”, En: Improving Productivity by Decreasing Water Demand. Rice Improvement, 2021, Growing Rice with Less Water, pp. 147-170, 2021, DOI: https://doi.org/10.1007/978-3-030-66530-2_5.). Además, el riego por aspersión facilita a los agricultores adoptar prácticas de conservación del suelo, como la agricultura sin labranza y la rotación de cultivos (Pinto et al., 2020PINTO, M.A.B.; PARFITT, J.M.B.; TIMM, L.C.; FARIA, L.C.; CONCENÇO, G.; STUMPF, L.; NÖRENBERG, B.G.: “Sprinkler irrigation in lowland rice: Crop yield and its components as a function of water availability in different phenological phases”, Field Crops Research, 248: 107714, 2020, ISSN: 0378-4290.; Rato et al., 2023RATO-NUNES, J.M.; MARTÍN-FRANCO, C.; PEÑA, D.; TERRÓN-SÁNCHEZ, J.; VICENTE, L.A.; FERNÁNDEZ-RODRÍGUEZ, D.; ALBARRÁN, A.; LÓPEZ-PIÑEIRO, A.: “Combined use of biochar and sprinkler irrigation may enhance rice productivity in water-stressed regions”, Annals of Agricultural Sciences, 68(1): 48-59, 2023, ISSN: 0570-1783, DOI: http://doi.org/10.1016/j.aoas.2023.05.002.).

Un estudio de campo de dos años desarrollado por Spanu et al. (2020)SPANU, A.; VALENTE, M.; LANGASCO, I.; LEARDI, R.; ORLANDONI, A.M.; CIULU, M.; DEROMA, M.A.; SPANO, N.; BARRACU, F.; PILO, M.I.: “Effect of the irrigation method and genotype on the bioaccumulation of toxic and trace elements in rice”, Science of The Total Environment, 748: 142484, 2020, ISSN: 0048-9697, DOI: http://doi.org/10.1016/j.scitotenv.2020.142484. en condiciones climáticas mediterráneas y para 26 genotipos de arroz, encontraron que los rendimientos promedio de arroz irrigado por inundación y aspersores nunca fueron estadísticamente diferentes entre sí. También, Hussein et al. (2023)HUSSEIN, N.; EL ANSARY, M.; AWAD, M.; MOSTAFA, H.M.S.: “Effect of sprinkler and furrow irrigation systems on rice yield and its water productivity”, Misr Journal of Agricultural Engineering, 40(4): 319-330, 2023, ISSN: 1687-384X, DOI: 10.21608/mjae.2023.229501.1113. en suelo arcillo de Egipto lograron cultivar arroz bajo el sistema de riego por aspersión, con valores más altos de rendimiento de grano, eficiencia en el uso del agua y productividad del agua, en comparación con el riego por surcos y el riego por inundación continua. Resultados similares se informaron por Brito et al. (2020)BRITO, M.A.; BARBAT, J.M.; TIMM, L.C.; COLLAZOS--ROMO, L.: “Concenço G, Stumpf L, Gomes B. Sprinkler irrigation in lowland rice: Crop yield and its components as a function of water availability in different phenological phases”, Field Crops Research, 248: 107714, 2020, DOI: https://doi.org/10.1016/j.fcr.2020.107714. en clima templado del sur de Brasil.

Al respecto se plantea que, los rendimientos del arroz aeróbicos irrigado por aspersión pueden ser equivalentes o superiores a los del arroz inundado continuamente, cuando el riego se activaba con una tensión del suelo entre ≤15 y ≤30 kPa (Champness et al., 2023CHAMPNESS, M.; BALLESTER, C.; HORNBUCKLE, J.: “Effect of soil moisture deficit on aerobic rice in temperate Australia”, Agronomy, 13(1): 168, 2023, ISSN: 2073-4395, DOI: https://doi.org/10.3390/agronomy13010168.). Sin embargo, estos umbrales de tensión del suelo determinados en estudios de otros ambientes pueden no ser idóneos en climas tropicales como el de Cuba. Teniendo en cuenta que Brito et al. (2020)BRITO, M.A.; BARBAT, J.M.; TIMM, L.C.; COLLAZOS--ROMO, L.: “Concenço G, Stumpf L, Gomes B. Sprinkler irrigation in lowland rice: Crop yield and its components as a function of water availability in different phenological phases”, Field Crops Research, 248: 107714, 2020, DOI: https://doi.org/10.1016/j.fcr.2020.107714. observaron en el Sur de Brasil que una tensión del agua del suelo de 10 kPa fue adecuada para manejar el riego por aspersión en arroz, especialmente en la etapa reproductiva, utilizando cultivares desarrollados para ambientes inundados.

Por otro lado, la transición del riego por inundación al riego por aspersión podría con llevar importantes ventajas medioambientales. Como la reducción a la mitad de las necesidades de agua, no es imprescindible el uso de maquinaria agrícola específica para la nivelación del suelo y el levantamiento de diques, puede ser posible reducir el número y la intensidad de los tratamientos contra las malas hierbas (Peña et al., 2023PEÑA, D.; MARTÍN, C.; FERNÁNDEZ-RODRÍGUEZ, D.; TERRÓN-SÁNCHEZ, J.; VICENTE, L.A.; ALBARRÁN, A.; RATO-NUNES, J.M.; LÓPEZ-PIÑEIRO, A.: “Medium-Term Effects of Sprinkler Irrigation Combined with a Single Compost Application on Water and Rice Productivity and Food Safety”, Plants, 12(3): 456, 2023, ISSN: 2223-7747, DOI: https://doi.org/10.3390/plants12030456.). Además, adoptar el riego por aspersión para el arroz puede ser una opción económicamente viable para los agricultores (Hussein et al., 2023HUSSEIN, N.; EL ANSARY, M.; AWAD, M.; MOSTAFA, H.M.S.: “Effect of sprinkler and furrow irrigation systems on rice yield and its water productivity”, Misr Journal of Agricultural Engineering, 40(4): 319-330, 2023, ISSN: 1687-384X, DOI: 10.21608/mjae.2023.229501.1113.).

Riego localizado en el arroz

 

El riego por goteo es una tecnología de ahorro de agua que se utiliza en la producción de arroz con siembra directa en seco fundamentalmente (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.). Aunque también se ha utilizado con buenos resultados en arroz trasplantado y en combinación con las prácticas del Sistema de Intensificación del Arroz (Rao et al., 2017RAO, K.; GANGWAR, S.; KESHRI, R.; CHOURASIA, L.; BAJPAI, A.; SONI, K.: “Effects of drip irrigation system for enhancing rice (Oryza sativa L.) yield under system of rice intensification management.”, Applied Ecology & Environmental Research, 15(4): 487-495, 2017, ISSN: 1589-1623, DOI: http://dx.doi.org/10.15666/aeer/1504_487495.; Padmanabhan, 2019PADMANABHAN, S.: “Drip irrigation technology for rice cultivation for enhancing rice productivity and reducing water consumption”, En: Proceedings of the 3rd World Irrigation Forum (WIF3), Bali, Indonesia, pp. 1-7, 2019.). El riego por goteo consiste en agregar agua al suelo lentamente y a intervalos frecuentes para mantener el contenido de humedad en el suelo, cerca de la capacidad de campo (Merza et al., 2023MERZA, N.; ATAB, H.; AL-FATLAWI, Z.; ALSHARIFI, S.: “Effect of irrigation systems on rice productivity.”, SABRAO Journal of Breeding and Genetics, 55(2): 587-597, 2023, DOI: http://doi.org/10.54910/sabrao2023.55.2.30.).

En el riego por goteo, disminuyen las pérdidas de agua por evaporación, percolación profunda, escorrentía y filtración, en comparación con el riego por inundación, lo que aumenta la productividad del agua en el cultivo (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.). Además, mejora el macollamiento y el desarrollo y funcionamiento del sistema radicular (Rao et al., 2017RAO, K.; GANGWAR, S.; KESHRI, R.; CHOURASIA, L.; BAJPAI, A.; SONI, K.: “Effects of drip irrigation system for enhancing rice (Oryza sativa L.) yield under system of rice intensification management.”, Applied Ecology & Environmental Research, 15(4): 487-495, 2017, ISSN: 1589-1623, DOI: http://dx.doi.org/10.15666/aeer/1504_487495.; Parthasarathi et al., 2018PARTHASARATHI, T.; VANITHA, K.; MOHANDASS, S.; VERED, E.: “Evaluation of drip irrigation system for water productivity and yield of rice”, Agronomy Journal, 110(6): 2378-2389, 2018, ISSN: 0002-1962, DOI: https://doi.org/10.2134/AGRONJ2018.01.0002.; Merza et al., 2023MERZA, N.; ATAB, H.; AL-FATLAWI, Z.; ALSHARIFI, S.: “Effect of irrigation systems on rice productivity.”, SABRAO Journal of Breeding and Genetics, 55(2): 587-597, 2023, DOI: http://doi.org/10.54910/sabrao2023.55.2.30.). Igualmente, puede proporcionar un mejor control de la salinidad Ikramov et al. (2023)IKRAMOV, R.; GAPPARO, S.; DZHUMAEV, Z.; ABDUKHOLIK, U.: “Results of application of water-saving technologies in rice farming”, En: E3S Web of Conferences, Ed. EDP Sciences, vol. 401, p. 01041, 2023, DOI: https://doi.org/10.1051/e3sconf/202340101041, ISBN: 2267-1242. y permitir la expansión del cultivo de arroz a zonas montañosas (Gonçalves et al., 2020GONÇALVES, J.M.; FERREIRA, S.; NUNES, M.; AGRAWAL, R.; AMADOR, P.; FILIPE, O.; DUARTE, I.M.; TEIXEIRA, M.; VASCONCELOS, T.; OLIVEIRA, F.: “Developing irrigation management at district scale based on water monitoring: study on Lis valley, Portugal”, AgriEngineering, 2(1): 78-95, 2020, ISSN: 2624-7402.). Sin embargo, el efecto del riego por goteo en el rendimiento del arroz puede variar según las condiciones locales y ambientales (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.).

Ikramov et al. (2023)IKRAMOV, R.; GAPPARO, S.; DZHUMAEV, Z.; ABDUKHOLIK, U.: “Results of application of water-saving technologies in rice farming”, En: E3S Web of Conferences, Ed. EDP Sciences, vol. 401, p. 01041, 2023, DOI: https://doi.org/10.1051/e3sconf/202340101041, ISBN: 2267-1242. en Uzbekistán reportan un ahorro de agua del 26,4 % al 37,6 % con riego por goteo, pero con una disminución significativa del rendimiento, lo que coincide con lo informado por Hang et al. (2022)HANG, X.; DANSO, F.; LUO, J.; LIAO, D.; ZHANG, J.; ZHANG, J.: “Effects of water-saving irrigation on direct-seeding rice yield and greenhouse gas emissions in north China”, Agriculture, 12(7): 937, 2022, ISSN: 2077-0472, DOI: https://doi.org/10.3390/agriculture12070937. en el norte de China. En cambio, Sasmita et al. (2022)SASMITA, P.; AGUSTIANI, N.; MARGARET, S.; ARDHIYANTI, S.D.; SUPRIHANTO, S.; NUGRAHA, Y.; SUHARTINI, S.: “Drip irrigation technology performance on rice cultivation”, Jurnal Teknik Pertanian Lampung, 11(1): 130-145, 2022, DOI: http://dx.doi.org/10.23960/jtep-l.v11.i1.130-145. en Indonesia obtuvieron un rendimiento agrícola similar al sistema tradicional de inundación, y sugieren que la fertirrigación mediante riego por goteo puede aumentar el rendimiento de los cultivos mediante la aplicación de fertilizante adecuado. En este sentido, Padmanabhan (2019)PADMANABHAN, S.: “Drip irrigation technology for rice cultivation for enhancing rice productivity and reducing water consumption”, En: Proceedings of the 3rd World Irrigation Forum (WIF3), Bali, Indonesia, pp. 1-7, 2019. y Soman (2021)SOMAN, P.: “Drip Irrigation and Fertigation Technology for Rice Production Leading to Higher Water Productivity”, International Journal of Water Resources and Arid Environments, 10(2): 70-77, 2021, ISSN: 2079-7079. en India observaron que el sistema de goteo con fertirrigación ahorró entre un 50 y un 61 % de agua, aumentó el rendimiento del arroz (13-28 %) en todas las variedades en comparación con los rendimientos registrados con el método de inundación convencional, con mejor eficiencia del uso de N, P y K bajo fertiirrigación por goteo. Resultado similar describen Merza et al. (2023)MERZA, N.; ATAB, H.; AL-FATLAWI, Z.; ALSHARIFI, S.: “Effect of irrigation systems on rice productivity.”, SABRAO Journal of Breeding and Genetics, 55(2): 587-597, 2023, DOI: http://doi.org/10.54910/sabrao2023.55.2.30. en Iraq.

Sin embargo, los sistemas de riego por goteo requieren instalación y mantenimiento especializados, incluida la verificación de fugas u obstrucciones en los emisores, el ajuste del caudal de agua y el monitoreo de los niveles de humedad del suelo. Esto implica mayor necesidad de mano de obra y altos costos de producción, por lo que no son factibles para los agricultores pobres y para las áreas con escases de mano de obra (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.).

Manejos de riego que ahorran agua

 

Aunque los experimentos sobre la producción de arroz con sistemas de riego por goteo y de aspersión son prometedores, el riego superficial tradicional con prácticas de inundación continua es el de mayor implementación en el mundo para el cultivo de arroz (Meriguetti et al., 2023MERIGUETTI-PINTO, V.; BORJA-REIS, A.F.; ABREU, M.L.; REICHARDT, K.; SANTOS, D.; JONG, Q.: “Sustainable irrigation management in tropical lowland rice in Brazil”, Agricultural Water Management, 284: 108345, 2023, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2023.108345.; Arouna et al., 2023AROUNA, A.; DZOMEKU, I.K.; SHAIBU, A.-G.; NURUDEEN, A.R.: “Water management for sustainable irrigation in rice (Oryza sativa L.) production: A review”, Agronomy, 13(6): 1522, 2023, ISSN: 2073-4395, DOI: https://doi.org/10.3390/agronomy13061522.). Ante esta situación, una alternativa puede ser desarrollar y adoptar prácticas de riego que mejoren la eficiencia en el uso del agua sin afectar el rendimiento (Arouna et al., 2023AROUNA, A.; DZOMEKU, I.K.; SHAIBU, A.-G.; NURUDEEN, A.R.: “Water management for sustainable irrigation in rice (Oryza sativa L.) production: A review”, Agronomy, 13(6): 1522, 2023, ISSN: 2073-4395, DOI: https://doi.org/10.3390/agronomy13061522.).

Entre los manejos de riego que ahorran agua en el cultivo de arroz, internacionalmente se destacan: el método humectación y secado alternativos (AWD), el sistema de arroz aeróbico, cultivo en suelo saturado (SSC) y el riego inteligente con sensores e internet de las cosas (IoT) (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.). No obstante, cada manejo tiene sus propias peculiaridades y deben adoptarse teniendo en cuenta el tipo de suelo, la idoneidad climática, la técnica de riego utilizada tradicionalmente, las características de los campos (topografía o nivelación), las dimensiones de las fincas, las condiciones económicas y la familiaridad de los agricultores con las tecnologías digitales (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.).

Alternate Wetting and Drying

 

La alternativa de Mojado y Secado Alterno (AWD) es la gestión para ahorrar agua más utilizada en la producción de arroz (Bwire et al., 2023BWIRE, D.; SAITO, H.; SIDLE, R.C.; NISHIWAKI, J.: “Water Management and Hydrological Characteristics of Rice-Paddy Catchments Under AWD Irrigation Practice: Asia and Sub-Saharan Africa”, 2023, DOI: 10.20944/preprints202311.1677.v1.). Se basa en la inundación intermitente de los arrozales y consiste en la alternancia de las condiciones aeróbicas y anaeróbicas del suelo, excepto durante las etapas de enraizamiento (arroz de trasplante), formación de panículas y floración (Bwire et al., 2023BWIRE, D.; SAITO, H.; SIDLE, R.C.; NISHIWAKI, J.: “Water Management and Hydrological Characteristics of Rice-Paddy Catchments Under AWD Irrigation Practice: Asia and Sub-Saharan Africa”, 2023, DOI: 10.20944/preprints202311.1677.v1.). Se puede aplicar después de la siembra en agua o en seco Gharsallah et al. (2023)GHARSALLAH, O.; RIENZNER, M.; MAYER, A.; TKACHENKO, D.; CORSI, S.; VUCITERNA, R.; ROMANI, M.; RICCIARDELLI, A.; CADEI, E.; TREVISAN, M.: “Economic, environmental, and social sustainability of Alternate Wetting and Drying irrigation for rice in northern Italy”, Frontiers in Water, 5: 1213047, 2023, ISSN: 2624-9375, DOI: 10.3389/frwa.2023.1213047. y de 1-2 semanas después del trasplante (Bwire et al., 2023BWIRE, D.; SAITO, H.; SIDLE, R.C.; NISHIWAKI, J.: “Water Management and Hydrological Characteristics of Rice-Paddy Catchments Under AWD Irrigation Practice: Asia and Sub-Saharan Africa”, 2023, DOI: 10.20944/preprints202311.1677.v1.).

En AWD, el riego se interrumpe durante días y cuando el contenido de agua en la capa del suelo explorada por las raíces de las plantas cae por debajo de un valor umbral, se vuelve a inundar el campo hasta una profundidad de 5-12 cm (Bwire et al., 2023BWIRE, D.; SAITO, H.; SIDLE, R.C.; NISHIWAKI, J.: “Water Management and Hydrological Characteristics of Rice-Paddy Catchments Under AWD Irrigation Practice: Asia and Sub-Saharan Africa”, 2023, DOI: 10.20944/preprints202311.1677.v1.; Gharsallah et al., 2023GHARSALLAH, O.; RIENZNER, M.; MAYER, A.; TKACHENKO, D.; CORSI, S.; VUCITERNA, R.; ROMANI, M.; RICCIARDELLI, A.; CADEI, E.; TREVISAN, M.: “Economic, environmental, and social sustainability of Alternate Wetting and Drying irrigation for rice in northern Italy”, Frontiers in Water, 5: 1213047, 2023, ISSN: 2624-9375, DOI: 10.3389/frwa.2023.1213047.; Mubangizi et al., 2023MUBANGIZI, A.; WANYAMA, J.; KIGGUNDU, N.; NAKAWUKA, P.: “Assessing Suitability of Irrigation Scheduling Decision Support Systems for Lowland Rice Farmers in Sub-Saharan Africa-A Review”, Agricultural Sciences, 14(2): 219-239, 2023, DOI: https://doi.org/10.4236/as.2023.142015.). Esta técnica se está implementando en países como India, Filipinas, Myanmar, Vietnam, Bangladesh, China, Italia, Nepal, Indonesia y los Estados Unidos de América (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.; Wichaidist et al., 2023WICHAIDIST, B.; INTRMAN, A.; PUTTRAWUTICHAI, S.; REWTRAGULPAIBUL, C.; CHUANPONGPANICH, S.; SUKSAROJ, C.: “The effect of irrigation techniques on sustainable water management for rice cultivation system-a review”, Applied Environmental Research, 45(4), 2023, ISSN: 2287-075X, DOI: https://doi.org/10.35762/AER.2023024.). En Cuba se conoce como riego de reposición (MINAG, 2020MINAG: Instructivo Técnico Instructivo Técnico del cultivo del arroz, Ed. Ministerio de la Agricultura. La Habana, Cuba, La Habana, Cuba, 142 p., publisher: Ed. Instituto de Investigaciones del Arroz, Ministerio de la Agricultura …, 2020.).

Según Carrijo et al. (2017)CARRIJO, D.R.; LUNDY, M.E.; LINQUIST, B.A.: “Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis”, Field Crops Research, 203: 173-180, 2017, ISSN: 0378-4290, DOI: https://doi.org/10.1016/j.fcr.2016.12.00. las investigaciones han demostrado que mantener un potencial hídrico del suelo (SWP) de ≥ 20 kPa o garantizar que el nivel del agua en el campo no caiga por debajo de 15 cm de la superficie del suelo, garantiza que las plantas no sufran estrés por sequía y los rendimientos no se vean afectados significativamente, independientemente del método de siembra (trasplante o siembra directa) y el tipo de cultivar (híbrida o genética). Investigaciones resientes también coinciden en que un umbral 15 cm garantiza que no exista reducción significativa del rendimiento (Bwire et al., 2023BWIRE, D.; SAITO, H.; SIDLE, R.C.; NISHIWAKI, J.: “Water Management and Hydrological Characteristics of Rice-Paddy Catchments Under AWD Irrigation Practice: Asia and Sub-Saharan Africa”, 2023, DOI: 10.20944/preprints202311.1677.v1.; Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.; Wichaidist et al., 2023WICHAIDIST, B.; INTRMAN, A.; PUTTRAWUTICHAI, S.; REWTRAGULPAIBUL, C.; CHUANPONGPANICH, S.; SUKSAROJ, C.: “The effect of irrigation techniques on sustainable water management for rice cultivation system-a review”, Applied Environmental Research, 45(4), 2023, ISSN: 2287-075X, DOI: https://doi.org/10.35762/AER.2023024.). Sin embargo, el umbral de riego para un AWD seguro varía según el tipo de suelo, el cultivar, la etapa de crecimiento del cultivo y el clima Mubangizi et al. (2023)MUBANGIZI, A.; WANYAMA, J.; KIGGUNDU, N.; NAKAWUKA, P.: “Assessing Suitability of Irrigation Scheduling Decision Support Systems for Lowland Rice Farmers in Sub-Saharan Africa-A Review”, Agricultural Sciences, 14(2): 219-239, 2023, DOI: https://doi.org/10.4236/as.2023.142015.; Wichaidist et al. (2023)WICHAIDIST, B.; INTRMAN, A.; PUTTRAWUTICHAI, S.; REWTRAGULPAIBUL, C.; CHUANPONGPANICH, S.; SUKSAROJ, C.: “The effect of irrigation techniques on sustainable water management for rice cultivation system-a review”, Applied Environmental Research, 45(4), 2023, ISSN: 2287-075X, DOI: https://doi.org/10.35762/AER.2023024., lo que puede representar un desafío para los agricultores a la hora de realizar un seguimiento de las variaciones óptimas del umbral de riego.

El umbral de contenido de agua del suelo puede monitorearse mediante sensores o dispositivos del estado del agua del suelo (como pueden ser tensiómetros o pozos de observación) (Bwire et al., 2023BWIRE, D.; SAITO, H.; SIDLE, R.C.; NISHIWAKI, J.: “Water Management and Hydrological Characteristics of Rice-Paddy Catchments Under AWD Irrigation Practice: Asia and Sub-Saharan Africa”, 2023, DOI: 10.20944/preprints202311.1677.v1.; Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.). Asimismo, la automatización de la práctica de AWD mediante sensores inteligentes basados ​​en Internet de las cosas (IoT) y alertas en tiempo real que aplican información sobre suelos, cultivos y clima, puede optimizar la eficiencia en el uso del agua (Pham et al., 2021PHAM, V.B.; DIEP, T.T.; FOCK, K.; NGUYEN, T.S.: “Using the Internet of Things to promote alternate wetting and drying irrigation for rice in Vietnam’s Mekong Delta”, Agronomy for Sustainable Development, 41(3): 43, 2021, ISSN: 1774-0746, DOI: https://doi.org/10.1007/s13593-021-00705-z.).

Se ha demostrado que el riego AWD ahorra agua de riego, mejora la eficiencia en el uso del agua, reduce las emisiones de gases de efecto invernadero, ahorra fertilizantes y pesticidas. Basado en un metanálisis de 56 estudios, Carrijo et al. (2017)CARRIJO, D.R.; LUNDY, M.E.; LINQUIST, B.A.: “Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis”, Field Crops Research, 203: 173-180, 2017, ISSN: 0378-4290, DOI: https://doi.org/10.1016/j.fcr.2016.12.00. establecieron que este método de riego AWD ahorró el 25,7 % del aporte de agua, con una mayor productividad del arroz. Pero Mallareddy et al. (2023)MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.. plantean que puede reducir el uso de agua hasta en un 37 % sin afectar la producción, debido a que estimula el crecimiento de las raíces (sistema de raíces más profundo). Este comportamiento de las raíces que permite una mejor absorción de agua y nutrientes de las capas más profundas del suelo, además logra que las plantas sean más tolerantes al estrés hídrico (Singh y Chakraborti, 2019SINGH, A.; CHAKRABORTI, M.: “Water and nitrogen use efficiency in SRI through AWD and LCC”, The Indian Journal of Agricultural Sciences, 89(12): 2059-2063, 2019, ISSN: 2394-3319, DOI: https://doi.org/10.56093/ijas.v89i12.96274.). Igualmente, (Bouman y Lampayan, 2009BOUMAN, B.A.M.; LAMPAYAN, R.M.: Rice Fact Sheet-Alternate Wetting Drying (AWD), Inst. International Rice Research Institute: Los Baños, Philippines, Los Baños, Philippines, 2009.), apreciaron que el riego intermitente con AWD disminuyó las plagas de insectos en un 92 % y las enfermedades en un 100 %.

Por otro lado, numerosos estudios sobre AWD han destacado beneficios adicionales, como: la reducción de la frecuencia del riego; el ahorro de combustible; la reducción de las emisiones de gases de efecto invernadero (GEI), particularmente metano; una mayor eficiencia en el uso de nitrógeno y fósforo, y una menor acumulación de contaminantes como el arsénico (As) y el mercurio (Hg) en el grano (Islam et al., 2022ISLAM, S.; GAIHRE, Y.K.; ISLAM, M.R.; AHMED, M.N.; AKTER, M.; SINGH, U.; SANDER, B.O.: “Mitigating greenhouse gas emissions from irrigated rice cultivation through improved fertilizer and water management”, Journal of Environmental Management, 307: 114520, 2022, ISSN: 0301-4797, DOI: https://doi.org/10.1016/j.jenvman.2022.114520.; Bwire et al., 2023BWIRE, D.; SAITO, H.; SIDLE, R.C.; NISHIWAKI, J.: “Water Management and Hydrological Characteristics of Rice-Paddy Catchments Under AWD Irrigation Practice: Asia and Sub-Saharan Africa”, 2023, DOI: 10.20944/preprints202311.1677.v1.; Wichaidist et al., 2023WICHAIDIST, B.; INTRMAN, A.; PUTTRAWUTICHAI, S.; REWTRAGULPAIBUL, C.; CHUANPONGPANICH, S.; SUKSAROJ, C.: “The effect of irrigation techniques on sustainable water management for rice cultivation system-a review”, Applied Environmental Research, 45(4), 2023, ISSN: 2287-075X, DOI: https://doi.org/10.35762/AER.2023024.).

Sin embargo, AWD puede no ser el enfoque más adecuado para el cultivo de arroz en suelos arenosos, ya que el agua se drena rápidamente y genera un ahorro mínimo de agua. De manera similar, en suelos arcillosos pesados y niveles freáticos poco profundos, puede no ser necesaria, ya que en estos suelos el nivel freático nunca cae por debajo de las raíces más bajas (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.). Igualmente, estudios realizados por Gharsallah et al. (2023)GHARSALLAH, O.; RIENZNER, M.; MAYER, A.; TKACHENKO, D.; CORSI, S.; VUCITERNA, R.; ROMANI, M.; RICCIARDELLI, A.; CADEI, E.; TREVISAN, M.: “Economic, environmental, and social sustainability of Alternate Wetting and Drying irrigation for rice in northern Italy”, Frontiers in Water, 5: 1213047, 2023, ISSN: 2624-9375, DOI: 10.3389/frwa.2023.1213047. en Italia, indicaron que los costes variables totales aplicando AWD fueron aproximadamente 71 euros más altos en comparación con la inundación continua, lo que atribuyeron a una mayor necesidad de mano de obra para la gestión del riego.

Una práctica agrícola prometedora que asociada a AWD, puede ofrecer opciones superiores en términos de ahorro de agua, productividad del arroz y reducción de emisiones de GEI es la agricultura de conservación (Gangopadhyay et al., 2023GANGOPADHYAY, S.; CHOWDHURI, I.; DAS, N.; PAL, S.C.; MANDAL, S.: “The effects of no-tillage and conventional tillage on greenhouse gas emissions from paddy fields with various rice varieties”, Soil and Tillage Research, 232: 105772, 2023, ISSN: 0167-1987, DOI: https://doi.org/10.1016/j.still.2023.105772.). La aplicación de los principios de AC basada en el mínimo disturbio del suelo, la retención de residuos en la superficie del campo y la rotación de cultivos, mejora la salud del suelo y la capacidad de retención de agua de los suelos arroceros Domínguez et al. (2024)DOMÍNGUEZ, V.C.; MIRANDA, C.A.; DÍAZ, L.G.; DOMÍNGUEZ, P.D.; DUARTE, D.C.; RUIZ, S.J.; RODRÍGUEZ, A.: “Properties of a cultivated soil of irrigated rice under conservation agriculture principles”, Net Journal of Agricultural Science, 12(1): 9-16, 2024, DOI: 10.30918/NJAS.121.24.011., poner otras bibliografías, lo que contribuye a reducir las emisiones de GEI e incrementar la eficiencia del agua.

Sistema de arroz aeróbico

 

El cultivo de arroz aeróbico es un enfoque para cultivar arroz en suelos bien drenados, no inundados y no saturados, sin agua estancada (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.; Saikumar et al., 2023SAIKUMAR, G.; JINSY, V.; SUMESH, K.: “Agro-economic evaluation of aerobic rice+ legume intercropping system under varying levels of nitrogen.”, The Mysore Journal of Agricultural Sciences, 57(3): 146-152, 2023.). Generalmente, el arroz se siembra en suelo seco, sin que se produzca ninguna inundación y el campo se riega de forma intermitente. Aunque, en ocasiones la gestión del agua consiste en inmersiones breves, que pueden durar algunos días, alternadas con períodos secos más largos Monaco et al. (2016)MONACO, F.; SALI, G.; BEN HASSEN, M.; FACCHI, A.; ROMANI, M.; VALÈ, G.: “Water management options for rice cultivation in a temperate area: a multi-objective model to explore economic and water saving results”, Water, 8(8): 336, 2016, ISSN: 2073-4441, DOI: 10.3390/w8080336., por lo que se deben utilizar cultivares específicos de arroz aeróbico.

Este sistema es compatible con las prácticas del SIR y se pueden utilizar tecnologías de riego como la humectación y secado (AWD) Kumar et al. (2023)KUMAR, R.M.; CHINTALAPATI, P.; RATHOD, S.; VIDHAN SINGH, T.; KUCHI, S.; MANNAVA, P.B.; LATHA, P.C.; SOMASEKHAR, N.; BANDUMULA, N.; MADAMSETTY, S.: “Comparison of System of Rice Intensification Applications and Alternatives in India: Agronomic, Economic, Environmental, Energy, and Other Effects”, Agronomy, 13(10): 2492, 2023, ISSN: 2073-4395, DOI: . https://doi.org/10.3390/ agronomy13102492. y el riego por goteo (Sasmita et al., 2022SASMITA, P.; AGUSTIANI, N.; MARGARET, S.; ARDHIYANTI, S.D.; SUPRIHANTO, S.; NUGRAHA, Y.; SUHARTINI, S.: “Drip irrigation technology performance on rice cultivation”, Jurnal Teknik Pertanian Lampung, 11(1): 130-145, 2022, DOI: http://dx.doi.org/10.23960/jtep-l.v11.i1.130-145.). Entre las principales ventajas de este sistema de cultivo se destaca el ahorro de agua, la reducción de las emisiones de gases de efecto invernadero y el potencial de calentamiento global (Kumar et al., 2023KUMAR, R.M.; CHINTALAPATI, P.; RATHOD, S.; VIDHAN SINGH, T.; KUCHI, S.; MANNAVA, P.B.; LATHA, P.C.; SOMASEKHAR, N.; BANDUMULA, N.; MADAMSETTY, S.: “Comparison of System of Rice Intensification Applications and Alternatives in India: Agronomic, Economic, Environmental, Energy, and Other Effects”, Agronomy, 13(10): 2492, 2023, ISSN: 2073-4395, DOI: . https://doi.org/10.3390/ agronomy13102492.). Además, puede facilitar el tráfico de la maquinaria agrícola y facilitar el proceso de cosecha-transporte. También, favorece la rotación del arroz con legumbres y leguminosas que aportan nitrógeno al suelo Saikumar et al. (2023)SAIKUMAR, G.; JINSY, V.; SUMESH, K.: “Agro-economic evaluation of aerobic rice+ legume intercropping system under varying levels of nitrogen.”, The Mysore Journal of Agricultural Sciences, 57(3): 146-152, 2023., pero el cambio del cultivo de arroz inundado convencional a un sistema de arroz aeróbico, generalmente ha dado como resultado rendimientos más bajos (Champness et al., 2023CHAMPNESS, M.; BALLESTER, C.; HORNBUCKLE, J.: “Effect of soil moisture deficit on aerobic rice in temperate Australia”, Agronomy, 13(1): 168, 2023, ISSN: 2073-4395, DOI: https://doi.org/10.3390/agronomy13010168.; Meriguetti et al., 2023MERIGUETTI-PINTO, V.; BORJA-REIS, A.F.; ABREU, M.L.; REICHARDT, K.; SANTOS, D.; JONG, Q.: “Sustainable irrigation management in tropical lowland rice in Brazil”, Agricultural Water Management, 284: 108345, 2023, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2023.108345.).

En el cultivo de arroz aeróbico, puede existir mayor infestación de malezas y ser necesario utilizar medidas de control de malezas intensivas, como la aplicación de herbicidas o deshierbe manual (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.). Investigaciones realizadas por Champness et al. (2023)CHAMPNESS, M.; BALLESTER, C.; HORNBUCKLE, J.: “Effect of soil moisture deficit on aerobic rice in temperate Australia”, Agronomy, 13(1): 168, 2023, ISSN: 2073-4395, DOI: https://doi.org/10.3390/agronomy13010168. en zonas templadas de Australia demuestra que el arroz aeróbico requiere más de 20 eventos de riego por temporada, lo que implica alta demanda de mano de obra, por lo que la adopción de arroz aeróbico a escala comercial es poco probable sin la utilización de tecnología de riego automatizado.

Cultivo de suelo saturado (SSC)

 

Es una alternativa de gestión del agua en la que se aplica riego poco profundo para lograr alrededor de 1 cm de profundidad de agua durante uno o dos días después de que el agua estancada haya desaparecido (Bwire et al., 2023BWIRE, D.; SAITO, H.; SIDLE, R.C.; NISHIWAKI, J.: “Water Management and Hydrological Characteristics of Rice-Paddy Catchments Under AWD Irrigation Practice: Asia and Sub-Saharan Africa”, 2023, DOI: 10.20944/preprints202311.1677.v1.; Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.). Generalmente, el SSC implica regar el campo a una profundidad de aproximadamente 1 cm por día después de que el agua estancada se haya disipado (Wichaidist et al., 2023WICHAIDIST, B.; INTRMAN, A.; PUTTRAWUTICHAI, S.; REWTRAGULPAIBUL, C.; CHUANPONGPANICH, S.; SUKSAROJ, C.: “The effect of irrigation techniques on sustainable water management for rice cultivation system-a review”, Applied Environmental Research, 45(4), 2023, ISSN: 2287-075X, DOI: https://doi.org/10.35762/AER.2023024.). En SSC, el suelo se mantiene lo más cerca posible de la saturación, lo que reduce la carga hidráulica y disminuye las perdidas por filtración y percolación (Bwire et al., 2023BWIRE, D.; SAITO, H.; SIDLE, R.C.; NISHIWAKI, J.: “Water Management and Hydrological Characteristics of Rice-Paddy Catchments Under AWD Irrigation Practice: Asia and Sub-Saharan Africa”, 2023, DOI: 10.20944/preprints202311.1677.v1.). La profundidad del agua sobre el suelo se mantiene por debajo de 3 cm (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.).

Según Matsue et al. (2021)MATSUE, Y.; TAKASAKI, K.; ABE, J.: “Water management for improvement of rice yield, appearance quality and palatability with high temperature during ripening period”, Rice Science, 28(4): 409-416, 2021, ISSN: 1672-6308, DOI: https://doi.org/10.1016/j.rsci.2021.05.011. el riego SSC puede aumentar significativamente el rendimiento de grano al incrementar el porcentaje de granos llenos en comparación con el sistema tradicional de inundación. En Australia, la CSS utilizó alrededor de un 32 % menos de agua en comparación con la producción tradicional de arroz inundado en ambas estaciones (húmeda y seca), sin ningún efecto sobre el rendimiento y la calidad del grano (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.). Resultado similar obtuvieron Borja et al. (2018)BORJA, R.A.F.; ALMEIDA, R.E.; LAGO, B.C.; TRIVELIN, P.C.; LINQUIST, B.; FAVARIN, J.L.: “Aerobic rice system improves water productivity, nitrogen recovery and crop performance in Brazilian weathered lowland soil”, Field Crops Research, 218: 59-68, 2018, ISSN: 0378-4290, DOI: https://doi.org/10.1016/j.fcr.2018.01.002. en Brasil.

El CSS facilita la utilización máxima de la lluvia y reduce el número de riegos necesarios para el desarrollo del cultivo, reduciendo así el costo de riego, la energía necesaria para el riego y el agua de riego (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.). Además, puede mejorar la eficiencia de utilización de nitrógeno y fósforo de la planta de arroz, y por consiguiente reducir la necesidad de fertilizantes (Wichaidist et al., 2023WICHAIDIST, B.; INTRMAN, A.; PUTTRAWUTICHAI, S.; REWTRAGULPAIBUL, C.; CHUANPONGPANICH, S.; SUKSAROJ, C.: “The effect of irrigation techniques on sustainable water management for rice cultivation system-a review”, Applied Environmental Research, 45(4), 2023, ISSN: 2287-075X, DOI: https://doi.org/10.35762/AER.2023024.). Al mismo tiempo, tiene el potencial de mitigar las emisiones de gases de efecto invernadero (GEI), en particular las emisiones de metano (Wichaidist et al., 2023WICHAIDIST, B.; INTRMAN, A.; PUTTRAWUTICHAI, S.; REWTRAGULPAIBUL, C.; CHUANPONGPANICH, S.; SUKSAROJ, C.: “The effect of irrigation techniques on sustainable water management for rice cultivation system-a review”, Applied Environmental Research, 45(4), 2023, ISSN: 2287-075X, DOI: https://doi.org/10.35762/AER.2023024.).

Riego inteligente (Smart Irrigation)

 

Esta tecnología se sustenta en el uso de sensores de riego inteligente, el Internet de las Cosas (loT), las comunicaciones inalámbricas, las redes de estaciones meteorológicas automáticas, la medición mejorada de la evapotranspiración de los cultivos, las imágenes aéreas y satelitales, y la tecnología de computación en la nube. Se utilizan redes inalámbricas para recopilar datos de sensores de humedad del suelo, a los que luego se puede acceder a través de un navegador web o una aplicación de teléfono inteligente (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.; Zeng et al., 2023ZENG, Y.-F.; CHEN, C.-T.; LIN, G.-F.: “Practical application of an intelligent irrigation system to rice paddies in Taiwan”, Agricultural Water Management, 280: 108216, 2023, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2023.108216.).

El sistema de riego inteligente basado en IoT permite el monitoreo remoto en tiempo real del contenido de humedad y la gestión precisa del riego en los arrozales, a través de dispositivos móviles (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.; Zeng et al., 2023ZENG, Y.-F.; CHEN, C.-T.; LIN, G.-F.: “Practical application of an intelligent irrigation system to rice paddies in Taiwan”, Agricultural Water Management, 280: 108216, 2023, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2023.108216.). Los sistemas de riego se pueden automatizar para adaptarse a diferentes cultivos, suelo, clima y otros factores con la ayuda de sensores de humedad y temperatura, dispositivos IoT y algoritmos de aprendizaje automático (Vijayakumar et al., 2022bVIJAYAKUMAR, S.; KUMAR, D.; RAMESH, K.; JINGER, D.; RAJPOOT, S.K.: “Effect of Potassium fertilization on water productivity, irrigation water use efficiency, and grain quality under direct seeded rice-wheat cropping system”, J. Plant Nutr., 45: 2023-2038, 2022b.). Además, se pueden integrar con otras tecnologías, como el pronóstico del tiempo o imágenes tomadas por drones, para optimizar el proceso de riego (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.).

La automatización de los sistemas de riego aumenta la producción sin requerir mano de obra, mejora la calidad y la eficiencia del uso del agua de los cultivos, al tiempo que reduce el consumo de agua, el tiempo, el costo y el gasto energético del riego (Vijayakumar et al., 2022aVIJAYAKUMAR, S.; CHOUDHARY, A.K.; DEIVEEGAN, M.; THIRUMALAIKUMAR, R.; KUMAR, R.M.: “Android based mobile application for rice crop management”, Chronicle of Bioresource Management, 6(Mar, 1): 019-024, 2022a.; Zeng et al., 2023ZENG, Y.-F.; CHEN, C.-T.; LIN, G.-F.: “Practical application of an intelligent irrigation system to rice paddies in Taiwan”, Agricultural Water Management, 280: 108216, 2023, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2023.108216.). Los sistemas de IoT son particularmente útiles en las regiones con una fuerza laboral limitada a causa de la reducción de la población rural, el envejecimiento de la población o el aumento de los salarios laborales en las actividades agrícolas, teniendo en cuenta se reduce la necesidad de mano de obra entre un 19,1 % y 24,5 %, en comparación con el sistema de riego convencional (Lee, 2022LEE, J.: “Evaluation of automatic irrigation system for rice cultivation and sustainable agriculture water management”, Sustainability, 14(17): 11044, 2022, ISSN: 2071-1050, DOI: https://doi.org/10.3390/su141711044.; Zeng et al., 2023ZENG, Y.-F.; CHEN, C.-T.; LIN, G.-F.: “Practical application of an intelligent irrigation system to rice paddies in Taiwan”, Agricultural Water Management, 280: 108216, 2023, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2023.108216.). Además, los agricultores pueden aumentar los beneficios de ahorro de agua si se combinan con tecnologías como de la tecnología AWD, SRI o riego intermitente (Pham et al., 2021PHAM, V.B.; DIEP, T.T.; FOCK, K.; NGUYEN, T.S.: “Using the Internet of Things to promote alternate wetting and drying irrigation for rice in Vietnam’s Mekong Delta”, Agronomy for Sustainable Development, 41(3): 43, 2021, ISSN: 1774-0746, DOI: https://doi.org/10.1007/s13593-021-00705-z.; Zeng et al., 2023ZENG, Y.-F.; CHEN, C.-T.; LIN, G.-F.: “Practical application of an intelligent irrigation system to rice paddies in Taiwan”, Agricultural Water Management, 280: 108216, 2023, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2023.108216.).

Sin embargo, la adopción y difusión de los sistemas de riego automatizados basados ​​en sensores de IoT, en los campos de arroz puede ser lenta debido a factores como la falta de experiencia técnica de los productores y el alto coste de los sensores utilizados para el riego automático inteligente, que resulta inaccesibles para los agricultores pequeños, fundamentalmente (García et al., 2020GARCÍA, L.; PARRA, L.; JIMENEZ, J.M.; LLORET, J.; LORENZ, P.: “IoT-based smart irrigation systems: An overview on the recent trends on sensors and IoT systems for irrigation in precision agriculture”, Sensors, 20(4): 1042, 2020, ISSN: 1424-8220, DOI: https://doi.org/10.3390/s20041042.; Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.). Además, para su uso es necesario que exista una conexión a Internet de calidad para que los datos puedan enviarse desde el remitente al receptor, lo que, en las áreas arroceras de Cuba, aún constituye un problema.

Prácticas agronómicas que ahorran agua

 

En el cultivo de arroz irrigado, las múltiples soluciones agronómicas que se pueden adoptar para ahorrar agua incluyen:

  • Un cambio en la combinación de cultivos, introducción de nuevos cultivares de arroz con características genéticamente mejoradas que requieran menos agua Surendran et al. (2021)SURENDRAN, U.; RAJA, P.; JAYAKUMAR, M.; SUBRAMONIAM, S.R.: “Use of efficient water saving techniques for production of rice in India under climate change scenario: A critical review”, Journal of Cleaner Production, 309: 127272, 2021, ISSN: 0959-6526, DOI: https://doi.org/10.1016/j.jclepro.2021.127272. y de ciclo corto (Monaco et al., 2016MONACO, F.; SALI, G.; BEN HASSEN, M.; FACCHI, A.; ROMANI, M.; VALÈ, G.: “Water management options for rice cultivation in a temperate area: a multi-objective model to explore economic and water saving results”, Water, 8(8): 336, 2016, ISSN: 2073-4441, DOI: 10.3390/w8080336.; Hussein et al., 2023HUSSEIN, N.; EL ANSARY, M.; AWAD, M.; MOSTAFA, H.M.S.: “Effect of sprinkler and furrow irrigation systems on rice yield and its water productivity”, Misr Journal of Agricultural Engineering, 40(4): 319-330, 2023, ISSN: 1687-384X, DOI: 10.21608/mjae.2023.229501.1113.).

  • El empleo de coberturas vegetales Wei et al. (2019)WEI, Q.; XU, J.; SUN, L.; WANG, H.; LV, Y.; LI, Y.; HAMEED, F.: “Effects of straw returning on rice growth and yield under water-saving irrigation”, Chilean journal of agricultural research, 79(1): 66-74, 2019, ISSN: 0718-5839, DOI: https://doi.org/10.4067/S0718-58392019000100066.; Singh et al. (2021)SINGH, B.; MISHRA, S.; BISHT, D.S.; JOSHI, R.: “Growing rice with less water: Improving productivity by decreasing water demand”, En: Improving Productivity by Decreasing Water Demand. Rice Improvement, 2021, Growing Rice with Less Water, pp. 147-170, 2021, DOI: https://doi.org/10.1007/978-3-030-66530-2_5. o acolchado plástico Zhang et al. (2022)ZHANG, W.; TIAN, Y.; FENG, Y.; LIU, J.; ZHENG, C.: “Water-Saving Potential of Different Agricultural Management Practices in an Arid River Basin”, Water, 14(13): 2072, 2022, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w14132072., especialmente en condiciones de suelo aeróbico no saturado (Singh et al., 2021SAHA, A.; GUPT, C.B.; SEKHARAN, S.: “Recycling natural fibre to superabsorbent hydrogel composite for conservation of irrigation water in semi-arid regions”, Waste and Biomass Valorization, 12(12): 6433-6448, 2021, ISSN: 1877-2641, DOI: https://doi.org/10.1007/s12649-021-01489-9.).

  • Siembra en seco y riego intermitente, conocido como arroz aeróbico (Monaco et al., 2016MONACO, F.; SALI, G.; BEN HASSEN, M.; FACCHI, A.; ROMANI, M.; VALÈ, G.: “Water management options for rice cultivation in a temperate area: a multi-objective model to explore economic and water saving results”, Water, 8(8): 336, 2016, ISSN: 2073-4441, DOI: 10.3390/w8080336.).

  • Aplicación de materia orgánica (Chen et al., 2022CHEN, K.; YU, S.; MA, T.; DING, J.; HE, P.; DAI, Y.; ZENG, G.: “Effects of water and nitrogen management on water productivity, nitrogen use efficiency and leaching loss in rice paddies. Water 14 (10): 1596”, Water, 14(10): 1596, 2022, DOI: https://doi.org/10.3390/w14101596.).

  • Practicar el cultivo sin labranza y siembra directa Gangopadhyay et al. (2023)GANGOPADHYAY, S.; CHOWDHURI, I.; DAS, N.; PAL, S.C.; MANDAL, S.: “The effects of no-tillage and conventional tillage on greenhouse gas emissions from paddy fields with various rice varieties”, Soil and Tillage Research, 232: 105772, 2023, ISSN: 0167-1987, DOI: https://doi.org/10.1016/j.still.2023.105772., lo que implica eliminar el laboreo tradicional y la práctica de fangueo (Carnevale et al., 2023CARNEVALE-ZAMPAOLO, F.; KASSAM, A.; FRIEDRICH, T.; PARR, A.; UPHOFF, N.: “Compatibility between Conservation Agriculture and the System of Rice Intensification”, Agronomy, 13(11): 2758, 2023, ISSN: 2073-4395, DOI: 10.20944/preprints202309.1689.v1.).

  • La implementación de métodos eficientes de control de malezas (Monaco et al., 2016MONACO, F.; SALI, G.; BEN HASSEN, M.; FACCHI, A.; ROMANI, M.; VALÈ, G.: “Water management options for rice cultivation in a temperate area: a multi-objective model to explore economic and water saving results”, Water, 8(8): 336, 2016, ISSN: 2073-4441, DOI: 10.3390/w8080336.; Farooq et al., 2019FAROOQ, M.; HUSSAIN, M.; UL-ALLAH, S.; SIDDIQUE, K.: “Physiological and agronomic approaches for improving water-use efficiency in crop plants”, Agricultural Water Management, 219: 95-108, 2019, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2019.04.010.).

  • Nivelación adecuada de los campos (Haji, 2023HAJI, W.S.: “Adoption of technology to improve self-sufficiency in paddy plantations in Brunei: Challenges and mitigation strategies for intermediate stakeholders.”, En: IOP Conference Series: Earth and Environmental Science, Ed. IOP Publishing, vol. 1182, p. 012011, 2023, DOI: 10.1088/1755-1315/1182/1/012011, ISBN: 1755-1315.; Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.).

  • Reutilizar el agua pro exceso o de drenaje (Haji, 2023HAJI, W.S.: “Adoption of technology to improve self-sufficiency in paddy plantations in Brunei: Challenges and mitigation strategies for intermediate stakeholders.”, En: IOP Conference Series: Earth and Environmental Science, Ed. IOP Publishing, vol. 1182, p. 012011, 2023, DOI: 10.1088/1755-1315/1182/1/012011, ISBN: 1755-1315.).

  • Ajustar la fecha de siembra del cultivo para hacer un uso más eficaz de la lluvia (Luo et al., 2022LUO, W.; CHEN, M.; KANG, Y.; LI, W.; LI, D.; CUI, Y.; KHAN, S.; LUO, Y.: “Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall”, Agricultural Water Management, 260: 107285, 2022, ISSN: 0378-3774, DOI: https://doi.org/10.1016/j.agwat.2021.107285.).

  • La siembra directa en seco e inundación retardada, lo que elimina el consumo de agua para la preparación de suelo. Estrategia que en Italia implica una reducción de los costos variables totales de 215,50 euros por hectárea, con respecto al cultivo tradicional e inundación permanente (Gharsallah et al., 2023GHARSALLAH, O.; RIENZNER, M.; MAYER, A.; TKACHENKO, D.; CORSI, S.; VUCITERNA, R.; ROMANI, M.; RICCIARDELLI, A.; CADEI, E.; TREVISAN, M.: “Economic, environmental, and social sustainability of Alternate Wetting and Drying irrigation for rice in northern Italy”, Frontiers in Water, 5: 1213047, 2023, ISSN: 2624-9375, DOI: 10.3389/frwa.2023.1213047.).

  • Construir y revestir canales y vías fluviales de campo Mallareddy et al. (2023)MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802., lo que puede realizarse mediante el uso de materiales de polietileno (Rau et al., 2020RAU, A.; BEGMATOV, I.; KADASHEVA, Z.; RAU, G.: “Water resources management in rice irrigation systems and improvement of ecological situation in rice growing river basins”, En: IOP Conference Series: Earth and Environmental Science, Ed. IOP Publishing, vol. 614, p. 012151, 2020, DOI: 10.1088/1755-1315/614/1/012151, ISBN: 1755-1315.).

En Cuba, según varios trabajos de investigación, la exposición del cultivo a condiciones de estrés controlado por déficit hídrico, fundamentalmente en la fase de ahijamiento ha favorecido el incremento del rendimiento y disminuido el consumo de agua (Ruiz et al., 2016RUIZ-SÁNCHEZ, M.; MUÑOZ-HERNÁNDEZ, Y.; POLÓN-PÉREZ, R.: “Manejo del agua de riego en el cultivo de arroz (Oryza sativa L.) por trasplante, su efecto en el rendimiento agrícola e industrial”, Cultivos Tropicales, 37(3): 178-186, 2016, ISSN: 0258-5936.; Polón et al., 2019POLÓN-PÉREZ, R.; MIRANDA-CABALLERO, A.; DÍAZ-GARCÍA, R.; RUÍZ-SÁNCHEZ, M.; GUERRA-HERNÁNDEZ, G.; VELÁZQUEZ-PÉREZ, F.: “Effect of Water Stress on Rice Regrowth Crop. Second Part”, Revista Ciencias Técnicas Agropecuarias, 28(3): 1-6, 2019, ISSN: 1010-2760.). Otros estudios mundiales demuestran que, reduciendo la altura de la lámina de agua, así como fortalecer los programas de extensión, capacitación y demostración en campos de agricultores, para conservar agua y aumentar la eficiencia del riego, pueden ser estrategias que contribuyan al ahorro de agua (Mallareddy et al., 2023MALLAREDDY, M.; THIRUMALAIKUMAR, R.; BALASUBRAMANIAN, P.; NASEERUDDIN, R.; NITHYA, N.; MARIADOSS, A.; EAZHILKRISHNA, N.; CHOUDHARY, A.K.; DEIVEEGAN, M.; SUBRAMANIAN, E.: “Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies”, Water, 15(10): 1802, 2023, ISSN: 2073-4441, DOI: https://doi.org/10.3390/w15101802.). También, es esencial brindar estímulo, apoyo e incentivos a los agricultores para que adopten estos métodos en la práctica (Wichaidist et al., 2023WICHAIDIST, B.; INTRMAN, A.; PUTTRAWUTICHAI, S.; REWTRAGULPAIBUL, C.; CHUANPONGPANICH, S.; SUKSAROJ, C.: “The effect of irrigation techniques on sustainable water management for rice cultivation system-a review”, Applied Environmental Research, 45(4), 2023, ISSN: 2287-075X, DOI: https://doi.org/10.35762/AER.2023024.). Lo cual constituye elementos importantes a considerar al adoptar sistemas de cultivos alternativos que contribuyan al ahorro de agua.

Sistema de intensificación del arroz (SRI)

 

Consiste en la aplicación de cuatro reglas fundamentales, relacionadas entre sí: una plantación temprana, ágil y sólida; disminución de la densidad de plantas; mejorar el suelo mediante suplementos orgánicos; y aplicación controlada y reducida de agua (Singh et al., 2021SINGH, B.; MISHRA, S.; BISHT, D.S.; JOSHI, R.: “Growing rice with less water: Improving productivity by decreasing water demand”, En: Improving Productivity by Decreasing Water Demand. Rice Improvement, 2021, Growing Rice with Less Water, pp. 147-170, 2021, DOI: https://doi.org/10.1007/978-3-030-66530-2_5.). Sin embargo, con frecuencia se adoptan ajustes para hacer frente a las condiciones cambiantes del suelo, los diseños climáticos, el control del agua, la accesibilidad al trabajo, el acceso a los recursos naturales y la elección de depender completamente de la agricultura orgánica (Uddin y Dhar, 2020UDDIN, M.T.; DHAR, A.R.: “Assessing the impact of water-saving technologies on Boro rice farming in Bangladesh: economic and environmental perspective”, Irrigation Science, 38(2): 199-212, 2020, ISSN: 0342-7188.). Este es un sistema fundamentalmente concebido para la siembra por trasplante con plántulas de entre 8 y 12 días de edad.

El SRI ha demostrado resultados positivos en China e India y en más de 60 países de Asia, África y América Latina (Kumar et al., 2023KUMAR, R.M.; CHINTALAPATI, P.; RATHOD, S.; VIDHAN SINGH, T.; KUCHI, S.; MANNAVA, P.B.; LATHA, P.C.; SOMASEKHAR, N.; BANDUMULA, N.; MADAMSETTY, S.: “Comparison of System of Rice Intensification Applications and Alternatives in India: Agronomic, Economic, Environmental, Energy, and Other Effects”, Agronomy, 13(10): 2492, 2023, ISSN: 2073-4395, DOI: . https://doi.org/10.3390/ agronomy13102492.). En general, el SRI puede reducir la cantidad de semilla requerida de 120 a 10 kg ha-1. Además, las evaluaciones en finca de los principales países productores de arroz (Bangladesh, Camboya, China, India, Indonesia, Nepal, Sri Lanka y Vietnam) indican que, como promedio, aumenta el rendimiento en un 47 %, ahorra un 40 % de agua, aumenta los ingresos por hectárea en un 68 % y reduce los costos por hectárea en un 23 % (Mubangizi et al., 2023MUBANGIZI, A.; WANYAMA, J.; KIGGUNDU, N.; NAKAWUKA, P.: “Assessing Suitability of Irrigation Scheduling Decision Support Systems for Lowland Rice Farmers in Sub-Saharan Africa-A Review”, Agricultural Sciences, 14(2): 219-239, 2023, DOI: https://doi.org/10.4236/as.2023.142015.) También, puede reducir las emisiones de gases de efecto invernadero en un 21 % (Mubangizi et al., 2023MUBANGIZI, A.; WANYAMA, J.; KIGGUNDU, N.; NAKAWUKA, P.: “Assessing Suitability of Irrigation Scheduling Decision Support Systems for Lowland Rice Farmers in Sub-Saharan Africa-A Review”, Agricultural Sciences, 14(2): 219-239, 2023, DOI: https://doi.org/10.4236/as.2023.142015.) y su tecnología es más accesible a pequeños y medianos productores (Valdiviezo et al., 2023VALDIVIEZO, E.W.; HERÁN, R.E.; VIVAS, M.L.: “Impacto del sistema intensivo de cultivar arroz (SICA) en el Ecuador”, Ciencia Latina Revista Científica Multidisciplinar, 7(2): 11198-11213, 2023, ISSN: 2707-2215.).

Sin embargo, las posturas de arroz deben plantarse con mayor cuidado y precisión, labor que aún se realiza fundamentalmente de forma manual en muchos países, igualmente puede ser necesario realizar labores adicionales de deshierbe, por lo que los mayores requisitos de mano de obra han impedido su adopción en varios países (Kaur et al., 2023KAUR, P.; AGRAWAL, R.; PFEFFER, F.M.; WILLIAMS, R.; BOHIDAR, H.B.: “Hydrogels in agriculture: Prospects and challenges”, Journal of Polymers and the Environment, 31(9): 3701-3718, 2023, ISSN: 1566-2543, DOI: https://doi.org/10.1007/s10924-023-02859-1.). No obstante, en la actualidad existen máquinas autopropulsadas para el trasplante mecanizado del arroz Miranda et al. (2022)MIRANDA-CABALLERO, A.; DÍAZ-LÓPEZ, G.; RUIZ-SÁNCHEZ, M.; DOMÍNGUEZ-VENTO, C.; PANEQUE-RONDÓN, P.: “Evaluación de la calidad del trasplante mecanizado de arroz en Cuba”, Revista Ciencias Técnicas Agropecuarias, 31(2), 2022, ISSN: 2071-0054. y desmalezadores mecánicos que pueden contribuir a la implementación del SIR, incluso en grandes fincas.

También se ha informado como inconveniente para su mayor difusión, que no exista costumbre de trasplantar plántulas muy pequeñas e individuales. La necesidad de mejorar la construcción de los semilleros. Problemas de control de malezas debido a las mayores distancias de trasplante y el prescindir del uso de riego con una lámina constante de agua (Valdiviezo et al., 2023VALDIVIEZO, E.W.; HERÁN, R.E.; VIVAS, M.L.: “Impacto del sistema intensivo de cultivar arroz (SICA) en el Ecuador”, Ciencia Latina Revista Científica Multidisciplinar, 7(2): 11198-11213, 2023, ISSN: 2707-2215.).

Uso de hidrogel o polímero superabsorbente

 

El hidrogel se define como una red polimérica tridimensional que puede retener una cantidad significativa de agua dentro de su estructura e hincharse sin disolverse en agua (Guilherme et al., 2015GUILHERME, M.R.; AOUADA, F.A.; FAJARDO, A.R.; MARTINS, A.F.; PAULINO, A.T.; DAVI, M.F.T.; RUBIRA, A.F.; MUNIZ, E.C.: “Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review”, European Polymer Journal, 72: 365-385, 2015, ISSN: 0014-3057.). Las partículas (hidrogel o polímero superabsorbente), cuando están en el suelo, actúan como depósitos de agua, de los cuales las raíces de las plantas pueden absorber agua, por lo que la aplicación de hidrogel se ha identificado como una posible solución para aumentar la eficiencia en el uso del agua en el riego (Prakash et al., 2021bPRAKASH, S.; VASUDEVAN, S.; BANERJEE, A.; JOE, A.C.; REDDY, G.; KN, G.; MANI, S.K.: “Sustainable water consumption of rice (Oryza sativa L.) as influenced by superabsorbent polymer in water stressed conditions”, International Journal of Modern Agriculture, 10(1): 857-866, 2021b, ISSN: 2305-7246.).

Las principales ventajas del uso de hidrogeles, pueden variar según las condiciones del suelo. Sin embargo, estas ventajas incluyen un aumento en la germinación de las semillas, mayor crecimiento de las plántulas y sus raíces, lo que contribuye a una población de plantas más densa y a mayores rendimientos. Los hidrogeles también facilitan una mejor absorción del exceso de agua, permitiendo su liberación gradual durante períodos de estrés hídrico, lo que retrasa la aparición del punto de marchites permanente. Además, los hidrogeles aumentan significativamente la eficiencia en el uso del agua al reducir la pérdida de agua por evaporación y lixiviación, disminuyendo la frecuencia de riego, la necesidad de fertilizantes para los cultivos y los costos asociados con el riego. Igualmente, estos materiales pueden resistir las concentraciones de sal en el suelo, mejorando sus atributos físicos, químicos y biológicos (Vedovello et al., 2024VEDOVELLO, P.; SANCHES, L.V.; DA SILVA, T.G.; MAJARON, V.F.; BORTOLETTO, S.R.; RIBEIRO, C.; PUTTI, F.F.: “An Overview of Polymeric Hydrogel Applications for Sustainable Agriculture”, Agriculture, 14(6): 840, 2024, ISSN: 2077-0472, DOI: https://doi.org/10.3390/agriculture14060840.).

Los hidrogeles proporcionan soluciones versátiles para abordar la escasez de agua y la degradación del suelo en la agricultura (Vedovello et al., 2024VEDOVELLO, P.; SANCHES, L.V.; DA SILVA, T.G.; MAJARON, V.F.; BORTOLETTO, S.R.; RIBEIRO, C.; PUTTI, F.F.: “An Overview of Polymeric Hydrogel Applications for Sustainable Agriculture”, Agriculture, 14(6): 840, 2024, ISSN: 2077-0472, DOI: https://doi.org/10.3390/agriculture14060840.). Investigaciones recientes, muestran que la disponibilidad de agua en suelo franco arcilloso aumentó del 56 % al 125 % con la adición del hidrogel. Con una tasa de aplicación ideal del 0,2 %, el hidrogel disminuyó la necesidad de agua de riego en un 29 % en comparación con el suelo desnudo (Saha et al., 2021SAHA, A.; GUPT, C.B.; SEKHARAN, S.: “Recycling natural fibre to superabsorbent hydrogel composite for conservation of irrigation water in semi-arid regions”, Waste and Biomass Valorization, 12(12): 6433-6448, 2021, ISSN: 1877-2641, DOI: https://doi.org/10.1007/s12649-021-01489-9.).

Rehman et al. (2011)REHMAN, A.; AHMAD, R.; SAFDAR, M.: “Effect of hydrogel on the performance of aerobic rice sown under different techniques.”, Plant Soil Environ, 57(7): 321-325, 2011. encontraron que la aplicación de hidrogel mejoró el contenido de humedad del suelo franco arenoso, en comparación con el suelo sin hidrogel, lo que aumentó la cantidad de semillas germinadas y logró un mejor establecimiento del cultivo. Con una mejora significativa de los componentes del rendimiento (altura de las plantas, el número de hijos fértiles, número de granos por panícula y peso de 1000 granos) y el rendimiento de arroz en el suelo modificado con hidrogel, en todas las técnicas de siembra. Además, la siembra de arroz en camas con enmienda de hidrogel, mejoró el crecimiento y el rendimiento del arroz aeróbico más que otras técnicas de siembra.

También, El-Naby et al. (2024)EL-NABY, A.; EL-GHANDOR, A.; ABOU EL-DARAG, I.; MAHMOUD, M.: “Impact of Hydrogel Polymer on Water Productivity, Weed Control Efficiency and Yield of Broadcast-Seeded Rice”, International Journal of Plant & Soil Science, 36(2): 9-27, 2024, ISSN: 2320-7035, DOI: 10.9734/IPSS/2024/v36i2435. observaron que la aplicación de polímero de hidrogel conservó aproximadamente el 14,8 % del agua aplicada y mejoró el rendimiento del grano de arroz en un 16,5 %, así como, también aumentó la productividad del agua de 0,32 kg m-3 a 0,48 kg m-3 en comparación con el tratamiento sin hidrogel.

En general, los efectos encontrados en el cultivo del arroz, pueden deberse a la mejora, del contenido de humedad del suelo, la curva de retención de humedad, la densidad aparente, la densidad de partículas, la porosidad total, el diámetro de los poros, la materia orgánica y la actividad biológica en el suelo (Solieman et al., 2023SOLIEMAN, N.Y.; AFIFI, M.M.; ABU-ELMAGD, E.; ABOU-BAKER, N.; IBRAHIM, M.M.: “Hydro-physical, biological and economic study on simply, an environment-friendly and valuable rice straw-based hydrogel production”, Industrial Crops and Products, 201: 116850, 2023, ISSN: 0926-6690.). Así como, a la reducción de la lixiviación de nutrientes del suelo a través de escorrentía e infiltración (Prakash et al., 2021aPRAKASH, B.S.; VASUDEVAN, S.; MANI, S.K.; UPPALURI, S.; SUDAKAR, M.: “Drought mitigation through hydrogel application in rice (Oryza sativa L.) cultivation.”, Journal of Experimental Biology and Agricultural Sciences, 9(6): 727-733, 2021a, DOI: http://dx.doi.org/10.18006/2021.9(6).727.733.).

Aunque los estudios han señalado que el hidrogel en la agricultura no presenta riesgos para el medio ambiente Vedovello et al. (2024)VEDOVELLO, P.; SANCHES, L.V.; DA SILVA, T.G.; MAJARON, V.F.; BORTOLETTO, S.R.; RIBEIRO, C.; PUTTI, F.F.: “An Overview of Polymeric Hydrogel Applications for Sustainable Agriculture”, Agriculture, 14(6): 840, 2024, ISSN: 2077-0472, DOI: https://doi.org/10.3390/agriculture14060840. y su aplicación se identifica como una posible solución para aumentar la eficiencia en el uso del agua en el riego (Prakash et al., 2021bPRAKASH, S.; VASUDEVAN, S.; BANERJEE, A.; JOE, A.C.; REDDY, G.; KN, G.; MANI, S.K.: “Sustainable water consumption of rice (Oryza sativa L.) as influenced by superabsorbent polymer in water stressed conditions”, International Journal of Modern Agriculture, 10(1): 857-866, 2021b, ISSN: 2305-7246.). La implementación de hidrogel a gran escala puede verse obstaculizada por cuestiones como la relación costo-beneficio y la estabilidad de muchas prácticas agrícolas tradicionales (Kaur et al., 2023KAUR, P.; AGRAWAL, R.; PFEFFER, F.M.; WILLIAMS, R.; BOHIDAR, H.B.: “Hydrogels in agriculture: Prospects and challenges”, Journal of Polymers and the Environment, 31(9): 3701-3718, 2023, ISSN: 1566-2543, DOI: https://doi.org/10.1007/s10924-023-02859-1.). Por otro lado, la utilización de la mayor parte de los hidrogeles, todavía se basa en polímeros sintéticos, lo que genera preocupación sobre su papel en aplicaciones a largo plazo Vedovello et al. (2024)VEDOVELLO, P.; SANCHES, L.V.; DA SILVA, T.G.; MAJARON, V.F.; BORTOLETTO, S.R.; RIBEIRO, C.; PUTTI, F.F.: “An Overview of Polymeric Hydrogel Applications for Sustainable Agriculture”, Agriculture, 14(6): 840, 2024, ISSN: 2077-0472, DOI: https://doi.org/10.3390/agriculture14060840., por tanto, debe de emplearse con precaución en el cultivo de arroz.

Trabajos de investigación realizados por (Cisneros et al. (2018CISNEROS, Z.E.; CUN, G.R.; ROSALES, N.L.; GONZÁLEZ, M.D.: “Lluvia sólida, para un uso eficiente del agua. Resultados preliminares”, Ingeniería Agrícola, 8(1): 13-20, 2018, ISSN: 2227-8761., 2020CISNEROS, Z.E.; CUN, G.C.; HERRERA, P.J.; GONZÁLEZ, R.F.; CUN, R.S.; SARMIENTO, G.O.: “Efecto de los polímeros en la economía del agua.”, Revista Iberoamericana de polímeros, 21(1): 1-13, 2020., 2021CISNEROS-ZAYAS, E.; GONZÁLEZ-ROBAINA, F.; CUN-GONZÁLEZ, R.; HERRERA-PUEBLA, J.; MATOS-CREMÉ, H.; SARMIENTO-GARCÍA, O.: “Los polímeros súper absorbentes y su influencia sobre la productividad del agua en el frijol”, Revista Ingeniería Agrícola, 11(2): 10-17, 2021, ISSN: 2306-1545.) sobre el uso de polímeros en la agricultura cubana en los cultivos tomate, maíz y frijol han demostrado que en todos los ensayos cuando se aplicó el polímero se disminuye el número de riego. En consecuencia, la norma neta total también se redujo en el intervalo de 19 y 27 %, la productividad del agua se incrementa con respecto al tratamiento testigo en el rango de 24 y 40 %, lográndose, además las mejores relaciones beneficio-costo cuando se empleó el polímero.

Agricultura de conservación (AC)

 

A medida que aumenta la vulnerabilidad de los sistemas de producción agrícola a los efectos del cambio climático, el mundo necesita nuevos enfoques de cultivo que sean más resilientes y productivos (Carnevale et al., 2023CARNEVALE-ZAMPAOLO, F.; KASSAM, A.; FRIEDRICH, T.; PARR, A.; UPHOFF, N.: “Compatibility between Conservation Agriculture and the System of Rice Intensification”, Agronomy, 13(11): 2758, 2023, ISSN: 2073-4395, DOI: 10.20944/preprints202309.1689.v1.). La AC ha demostrado relevancia global para mejorar la producción de cultivos, el alivio de la pobreza, la seguridad alimentaria y la adaptabilidad y mitigación del cambio climático (Kassam et al., 2022KASSAM, A.; FRIEDRICH, T.; DERPSCH, R.: “Successful experiences and lessons from conservation agriculture worldwide”, Agronomy, 12(4): 769, 2022, ISSN: 2073-4395, DOI: https://doi.org/10.3390/agronomy12040769.). Esta tecnología de producción agrícola se caracteriza por tres principios fundamentales: mantener permanente el suelo cubierto con restos de cosecha o cubiertas vegetales al menos en un 30 %, una perturbación mínima del terreno y una diversificación de las especies cultivadas en rotación (Kassam et al., 2022KASSAM, A.; FRIEDRICH, T.; DERPSCH, R.: “Successful experiences and lessons from conservation agriculture worldwide”, Agronomy, 12(4): 769, 2022, ISSN: 2073-4395, DOI: https://doi.org/10.3390/agronomy12040769.).

Mundialmente, la AC es utilizada con buenos resultados en aproximadamente 205,4 Mha en todo el mundo, fundamentalmente en países como Estados Unidos, Brasil, Argentina, Canadá y Australia, y ha comenzado a granar aceptación en el cultivo del arroz (Kassam et al., 2022KASSAM, A.; FRIEDRICH, T.; DERPSCH, R.: “Successful experiences and lessons from conservation agriculture worldwide”, Agronomy, 12(4): 769, 2022, ISSN: 2073-4395, DOI: https://doi.org/10.3390/agronomy12040769.). Sin embargo, para sostener una productividad óptima de los factores y los servicios ecosistémicos, las prácticas básicas de AC deben combinarse con otras prácticas complementarias para el manejo integrado de cultivos, suelo, nutrientes, agua, plagas, mano de obra, energía y tierra (Kassam et al., 2022KASSAM, A.; FRIEDRICH, T.; DERPSCH, R.: “Successful experiences and lessons from conservation agriculture worldwide”, Agronomy, 12(4): 769, 2022, ISSN: 2073-4395, DOI: https://doi.org/10.3390/agronomy12040769.). En este sentido, la combinación de la AC con la aplicación de métodos y alternativas de riego que ahorran agua, podría contribuir a la sostenibilidad de la producción arrocera en condiciones de riego.

En un sistema de AC, la siembra se realiza directamente en suelos sin labrar Domínguez et al. (2021)DOMÍNGUEZ, V.C.; DE ARAÚJO, A.G.; MIRANDA, C.A.; DÍAZ, L.G.; RODRÍGUEZ, G.A.: “Machinery for direct sowing of rice in agricultural conditions”, International Journal of Food science and Agriculture, 5(3): 471-481, 2021, DOI: 10.26855/ijfsa.2021.09.018. y el agua se puede gestionar manteniendo el suelo en condiciones mayoritariamente húmedas sin inundaciones continuas (Carnevale et al., 2023CARNEVALE-ZAMPAOLO, F.; KASSAM, A.; FRIEDRICH, T.; PARR, A.; UPHOFF, N.: “Compatibility between Conservation Agriculture and the System of Rice Intensification”, Agronomy, 13(11): 2758, 2023, ISSN: 2073-4395, DOI: 10.20944/preprints202309.1689.v1.). Teniendo en cuenta que las condiciones de AC mejoran la salud del suelo y promueven el desarrollo radicular del cultivo, por lo que las plantas pueden tolerar mejor el estrés hídrico. Además, el mínimo disturbio del suelo y el aumento de la materia orgánica, mejoran la infiltración del suelo y la capacidad de retención de agua, lo que permite períodos más largos entre eventos de riego (Singh, 2018SINGH, S.: Profitable rice farming through system of rice intensification (SRI) under conservation agriculture, Ed. ICAR Research Complex for Eastern Region, Patna, Conservation Agriculture Mitigating Climate Change Effects and Doubling Farmers’ Income, Mishra, J.S. et al., eds ed., 233-237 p., 2018.).

El mantenimiento de las condiciones del suelo húmedo en los sistemas de AC se puede realizar mediante la gestión del agua. Ya sea con riego por goteo o riegos frecuentes (superficiales o por aspersión), o mediante ciclos de AWD en riego superficial (inundación por pulsos), los cuales pueden aumentar la eficiencia en el uso del agua en más del 50 % y reducir las emisiones de CH4 en un 30-70 % (Carnevale et al., 2023CARNEVALE-ZAMPAOLO, F.; KASSAM, A.; FRIEDRICH, T.; PARR, A.; UPHOFF, N.: “Compatibility between Conservation Agriculture and the System of Rice Intensification”, Agronomy, 13(11): 2758, 2023, ISSN: 2073-4395, DOI: 10.20944/preprints202309.1689.v1.).

También la AC ha mostrado buenos resultados en el cultivo de arroz en camas elevadas permanentes, sin labranza, cubiertas con residuos de biomasa, y el riego se aplica en los surcos entre las camas en mediante riego por inundación (Sharif et al., 2014SHARIF, A.; KASSAM, A.; FRIEDRICH, T.; UPHOFF, N.; JOSHI, R.C.; SAHU, P.: “Towards the integration of the System of Rice Intensification (SRI) and Conservation Agriculture (CA) in the Indus Basin in Pakistan Punjab”, Fiji Agric. J, 54: 48-52, 2014.). Con este método se logra reducir los requisitos de agua y mano de obra para el cultivo de arroz en un 70%, con un rendimiento de 12 t ha-1 en Pakistán (Sharif, 2011SHARIF, A.: “Technical adaptations for mechanized SRI production to achieve water saving and increased profitability in Punjab, Pakistan”, Paddy and Water Environment, 9(1): 111-119, 2011, ISSN: 1611-2490, DOI: https://doi.org/10.1016/j.agwat.2023.108345.). Resultado similar ha sido obtenido (Hossain et al., 2021HOSSAIN, M.; BEGUM, M.; HASHEM, A.; RAHMAN, M.M.; HAQUE, M.E.; BELL, R.W.: “Continuous practice of Conservation Agriculture for 3-5 years in intensive rice-based cropping patterns reduces soil weed seedbank”, Agriculture, 11(9): 895, 2021, ISSN: 2077-0472, DOI: https://doi.org/10.3390/agriculture11090895.) en Arkansas, EE.UU. en un suelo franco arenoso, no apto para el cultivo inundado (Carnevale et al., 2023CARNEVALE-ZAMPAOLO, F.; KASSAM, A.; FRIEDRICH, T.; PARR, A.; UPHOFF, N.: “Compatibility between Conservation Agriculture and the System of Rice Intensification”, Agronomy, 13(11): 2758, 2023, ISSN: 2073-4395, DOI: 10.20944/preprints202309.1689.v1.).

Por otro lado, el cultivo en camas elevadas y el riego por surcos puede beneficiar la rotación del arroz con otros cultivos que no toleran la inundación. Además, está demostrado que los sistemas de labranza cero inducen una reducción en el banco de semillas de malezas presentes en el suelo (Hossain et al., 2021HOSSAIN, M.; BEGUM, M.; HASHEM, A.; RAHMAN, M.M.; HAQUE, M.E.; BELL, R.W.: “Continuous practice of Conservation Agriculture for 3-5 years in intensive rice-based cropping patterns reduces soil weed seedbank”, Agriculture, 11(9): 895, 2021, ISSN: 2077-0472, DOI: https://doi.org/10.3390/agriculture11090895.). Este enfoque de cultivar el arroz bajo principios de AC en camas elevadas y riego por surcos es compatible con otros sistemas de cultivo como el sistema de intensificación del arroz Carnevale et al. (2023)CARNEVALE-ZAMPAOLO, F.; KASSAM, A.; FRIEDRICH, T.; PARR, A.; UPHOFF, N.: “Compatibility between Conservation Agriculture and the System of Rice Intensification”, Agronomy, 13(11): 2758, 2023, ISSN: 2073-4395, DOI: 10.20944/preprints202309.1689.v1..y puede potenciar la aplicación de hidrogel en la agricultura.

Conclusiones

 

  • En el mundo, se adoptan diferentes métodos de riego y alternativas de manejo del agua en el cultivo del arroz, todas encaminadas al uso eficiente y sostenible del recurso agua como medida de mitigación de los efectos de la variabilidad y el cambio climático.

  • Existen diferentes métodos de riego con mayor o menor eficiencia en el uso del agua que pueden ser utilizados en el riego del arroz. El estudio realizado en el presente trabajo evidencia que la tendencia es a la combinación de estos métodos, con diferentes estrategias que reduzcan los volúmenes de agua necesarios a aplicar para el control de las arvenses y el buen desarrollo fisiológico del cultivo del arroz.

  • La adopción de sistemas agrícolas que combinen las ventajas de la agricultura de conservación con el Sistema de Intensificación del Arroz y la aplicación de hidrogeles o polímero súper absorbente, puede ofrecer soluciones prometedoras para el futuro de las innovaciones y tecnologías agrícolas que abordan los desafíos para mejorar la eficiencia en el uso del agua de riego en el cultivo del arroz.