INTRODUCTION
⌅The soil is a living and dynamic system that functions through a unique balance in the interaction of its physical, chemical and biological components (Moreno et al., 2015MORENO, C.; GONZÁLEZ, M.I.; EGIDO, J.A.: “Influencia del manejo sobre la calidad del suelo”, Ecuador es calidad: Revista Científica Ecuatoriana, 2(1): 33-40, 2015, ISSN: 2528-7850. DOI: 10.36331/revista.v2i1.8). Its fertility is an important factor in the mineral nutrition of crops, therefore that its understanding is essential to provide better management of the nutrition (Garbanzo-León et al., 2017GARBANZO-LEÓN, G.; ALEMÁN-MONTES, B.; ALVARADO-HERNÁNDEZ, A.; ARAUJO DO NASCIMENTO, C.: “Validación de modelos geoestadísticos y convencionales en la determinación de la variación espacial de la fertilidad de suelos del Pacífico Sur de Costa Rica”, Investigaciones Geográficas, Boletín del Instituto de Geografía, 2017(93): 20-41, 2017, ISSN: 0188-4611, DOI: 10.14350/rig.54706).
The Vertisols soils are representative of the Eastern Region of Cuba, they cover important areas in the Granma and Holguín provinces and are used intensively for the production of sugar cane. The main characteristics and properties have been described by Hernández-Jiménez et al. (2014)HERNÁNDEZ-JIMÉNEZ, A.; LLANES-HERNÁNDEZ, V.; LÓPEZ-PÉREZ, D.; RODRÍGUEZ-CABELLO, J.: “Características de vertisoles en áreas periféricas de La Habana”, Cultivos Tropicales, 35(4): 68-74, 2014, ISSN: 0258-5936.; Marín et al. (2015MARÍN, M.R.; ARCIA, P.J.; VILLEGAS, D.R.; CHINE, H.A.; PÉREZ, E.: “Criterios básicos para el agrupamiento de suelos de mal drenaje cultivados con caña de azúcar”, En: Congreso Cubano de la Ciencia del Suelo 2015, La Habana, Cuba, 2015, ISBN: 978-959-296-039-8.); Cid et al. (2016)CID, L.G.; HERRERA, P.J.; LÓPEZ, S.T.; GONZÁLEZ, R.F.: “Resultados de algunas investigaciones en suelos Vérticos de Cuba”, Ingeniería Agrícola, 6(2): 51-56, 2016, ISSN: 2306-1545, e-ISSN: 2227-8761., Where the great physical and hydrophysical limitations stand out despite its good chemical fertility.
The loss of physical fertility is associated with production limiting factors. In this regard, Herrera-Puebla et al. (2011)HERRERA-PUEBLA, J.; PUJOL-ORTIZ, R.; CID-LAZO, G.; MÉNDEZ, M.; ALARCÓN, R.: “Problemas del drenaje agrícola en Cuba”, Revista Ingeniería Agrícola, 1(1): 21-32, 2011, ISSN: 2306-1545. detected that the provinces of Camagüey, Las Tunas, Holguín and Granma have more than 50 % of the agricultural area affected by poor drainage and in the latter more than 45 % is in salinity conditions. Álvarez y Rimski (2016)ÁLVAREZ, C.R.; RIMSKI, K.H.: Limitativas físicas de los suelos, Ed. Editorial Facultad de Agronomía. Universidad de Buenos Aires, Manejo de la fertilidad del suelo en planteos orgánico ed., Argentina, 167 p., 2016. determined that the decrease in effective depth corresponds to less availability of water and nutrients. On the other hand, the low infiltration rate and poor drainage conditions are associated with salinization due to the use of poor quality water without drainage in low places with a saline water table close to the surface Cid et al. (2016)CID, L.G.; HERRERA, P.J.; LÓPEZ, S.T.; GONZÁLEZ, R.F.: “Resultados de algunas investigaciones en suelos Vérticos de Cuba”, Ingeniería Agrícola, 6(2): 51-56, 2016, ISSN: 2306-1545, e-ISSN: 2227-8761.; Guida-Johnson et al. (2017)GUIDA-JOHNSON, B.; ABRAHAM, E.M.; CONY, M.A.: “Salinización del suelo en tierras secas irrigadas: perspectivas de restauración en Cuyo, Argentina”, Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo, 49(1): 205-215, 2017, ISSN: 1853-8665..
Microelements are part of plant nutrition and their content in soils is in balance with macroelements, since they originate from the same rock weathering process, are essential for plant life and perform non replaceable functions. Its availability in the soil is due to changes in chemical and physical-chemical properties and variations in the limiting edaphic factors in the soil landscape scenario in question.
The most complete studies on the availability of microelements in Vertisols were carried out by Falóh (1981)FALÓH, R.: Importancia pedológica y agroquímica de los contenidos, distribución y formas del Fe, Mn, Zn y Cu en los suelos típicos de Camagüey, Instituto Superior de Ciencias Agropecuarias de La Habana (ISCAH), Tesis Doctoral en Ciencias Agrícolas, La Habana, Cuba, 189 p., 1981. en Camagüey y Companioni (1981)COMPANIONI, N.: Formas de los compuestos de los microelementos de la República de Cuba donde se cultiva la caña de azúcar, Academia de Ciencias Agrícolas, V. I. Lenin, Tesis Doctoral en Ciencias Agrícolas, URSS, 198 p., 1981. in sugarcane soils of Cuba; however, the issue of forecasting the behavior of available microelements based on the variation of limiting edaphic factors of the production is not addressed.
Due to the above, the objective of this research was to evaluate the influence of production limiting factors on the availability of microelements in Vertisols planted with sugar cane in the Eastern Region of Cuba.
MATERIALS AND METHODS
⌅The study was developed in Vertisols planted with sugarcane in the Eastern Region of Cuba Hernández et al. (1999HERNÁNDEZ, A.; PÉREZ, J.; BOSCH, D.; RIVERO, L.; CAMACHO, E.; RUIZ, J.; JAIME, E.: “Clasificación genética de los suelos de Cuba”, Instituto de Suelos. Ministerio de la Agricultura. AGRINFOR. Ciudad de La Habana, Cuba, 1999.; 2015HERNÁNDEZ, J.; PÉREZ, J.; BOSCH, I.; CASTRO, S.: Clasificación de los suelos de Cuba 2015, Inst. Instituto Nacional de Ciencias Agrícolas (INCA), ISBN 978-959-7023-77-7), San José de las Lajas, Mayabeque, Cuba, 91 p., 2015.), which includes the provinces of Camagüey, Las Tunas, Holguín, Granma and Santiago de Cuba and represents 44.7 % of the study area. The soil samples were taken in the surface horizon (0 - 20 cm) through stratified random sampling, the grouping of soil established the homogeneous zone and the number of samples was determined using the procedure proposed by Hernández (2003)HERNÁNDEZ, S.R.: Metodología de la Investigación, Ed. Editorial Félix Varela, La Habana, Cuba, 474 p., 2003.. A total of 262 georeferenced samples were taken, made up of 30 sub-samples that made up a sample of one kg of soil per Minimum Management Unit (field), according to the methodology of Villegas et al. (2007VILLEGAS, R.; DE LEÓN, M.; CAMPOS, J.; FERNÁNDEZ, A.; MENÉNDEZ, A.; CABRERA, A.; PÉREZ, M.: Manual de procedimientos del SERFE, Ed. Publinica, INICA-MINAZ, La Habana, Cuba, 44 p., 2007.).
The chemical and physical-chemical analyzes were carried out in the laboratories of the Sugarcane Research Institute (INICA). The samples were air dried, crushed, sieved through a 1 mm mesh and ready for analysis. The variables analyzed were: pH (H2O) and pH (KCl) NC- 2001-2015 (2015)NC- 2001-2015: Calidad del suelo- Determinación de pH., Inst. Oficina Nacional de Normalización, norma cubana, La Habana, Cuba, 7 p., Vig de 2015. and soil organic matter (SOM) NC- 51- 1999 (1999)NC- 51- 1999: Calidad del suelo- Determinación del porcentaje de materia orgánica, Inst. Oficina Nacional de Normalización, norma cubana, La Habana, Cuba, 9 p., Vig de 1999.. The analyzes of Mn, Fe, Co, Ni, Cu and Zn available were determined by Atomic Absorption Spectrophotometry in a Brand Spectrometer SOLAAR 929 from UNICAM GB, belonging to the Nickel Research and Development Center (CEDINIQ-Moa).
The samples were sieved through a mesh of 0.5 mm and ready for analysis. For the extraction of the available microelements was used the solution of 0.005M diethylenetriaminepentacetic acid (DTPA) + 0.1M triethanolamine (TEA) + 0.01M CaCl2 according to ISO 14870: 2001 (2001)ISO 14870: 2001: Calidad de suelo-Extracción de oligoelementos mediante solución tamponada de DTPA, Inst. Oficina Nacional de Normalización, norma ISO, La Habana, Cuba, Vig de 2001.. The evaluation of the limiting factors: texture, slope, drainage, erosion and salinity was determined from the information according to the Methodological Standards for Soil Studies and Comprehensive Management of Sugarcane (ESMICA) (INICA-Cuba, 2003INICA-CUBA: Normas metodológicas para el Estudio de Suelos y el Manejo Integral de la Caña de Azúcar, Ed. Instituto de Investigaciones de la Caña de Azúcar, La Habana, Cuba, 2003.). The effective depth was evaluated for the categories proposed by Arzola-Pina y Machado de Armas (2015)ARZOLA-PINA, N.C.; MACHADO DE ARMAS, J.: “La aptitud de los suelos para la producción de caña de azúcar. Parte I. Calibración en condiciones experimentales y de producción.”, Revista Centro Agricola, 42(2): 33-38, 2015, ISSN: 0253-5785, ISSN: 2072-2001..The characterization of the physiographic conditions and the magnitude and intensity of the limiting factors in the agricultural surface were evaluated to the MINAG soil map 1:25,000 (Instituto de Suelos, 1975INSTITUTO DE SUELOS: Clasificación genética de los suelos de Cuba, Inst. Instituto de Suelos, Academia de Ciencias de Cuba, La Habana, Cuba, 28 p., 1975.).
The normality was tested with the Shapiro-Wilk W test. Descriptive statistics were used to measure the attributes of the population. The coefficient of variation (CV) was estimated according to the criteria of Nielsen et al. (1986)NIELSEN, D.; WARRICK, A.; MYERS, D.: “Geostatistical methods applied to soil science”, Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5: 53-82, 1986. DOI: 10.2136/sssabookser5.1.2ed.c3 where values less than 12%, between 12 and 60% and greater than 60% are considered low, medium and high variability, respectively. The relationship between the limiting factors of production and the contents of available microelements were determined by canonical correlation analysis (CCA) (Gauch Jr y Wentworth, 1976GAUCH JR, H.G.; WENTWORTH, T.R.: “Canonical correlation analysis as an ordination technique”, Vegetatio, 33(1): 17-22, 1976, ISSN: 0042-3106. DOI: 10.1007/BF00055295). The statistical treatment of the data was carried out using STATISTICA version 8 software.
RESULTS AND DISCUSSION
⌅The fertility status of the Vertisols in the study area is shows in the Table 1. In the surface horizon were found pH values that ranged between neutral and moderately alkaline. These results agree with those of Villegas et al. (2015)VILLEGAS, R.; MACHADO, I.; VIÑAS, Y.; CAMPOS, J.: “Análisis del comportamiento del pH, Fósforo y Potasio en las áreas bajo el control del Servicio de Fertilizantes y Enmiendas en Caña de Azúcar en Cuba”, En: Memorias del Congreso de Suelos 2015, La Habana, Cuba, 2015, ISBN: 978-959-296-039-8. that report 65% of the samples from the national database of SERFE between neutral and alkaline. The SOM content showed a medium supply level, due to the balance established in monoculture areas with sugarcane for more than 60 years, similar to what was proposed by Socarrás-Armenteros et al. (2019)SOCARRÁS-ARMENTEROS, Y.; HERNÁNDEZ-JIMÉNEZ, A.; TERRY-ALFONSO, E.; GONZÁLEZ-CAÑIZARES, P.J.; SÁNCHEZ-IZNAGA, A.; DELGADO-CABRERA, O.: “Cambios en las propiedades morfológicas de suelos pardos sialíticos sometidos a diferentes manejos agrícolas en Cuba”, Idesia (Arica), 37(3): 47-53, 2019, ISSN: 0718-3429. DOI: 10.4067/S0718-34292019000300047 in intensively worked soils and Marín et al. (2015)MARÍN, M.R.; ARCIA, P.J.; VILLEGAS, D.R.; CHINE, H.A.; PÉREZ, E.: “Criterios básicos para el agrupamiento de suelos de mal drenaje cultivados con caña de azúcar”, En: Congreso Cubano de la Ciencia del Suelo 2015, La Habana, Cuba, 2015, ISBN: 978-959-296-039-8. when studying poorly drained soils in Cuba.
Variable | Unit . | Med. | Min | Max. | SD | CV (%) |
---|---|---|---|---|---|---|
pHH2O | -log[H+] | 7,64 | 6,00 | 8,20 | 0,46 | 7,32 |
pHKCl | 6,80 | 5,10 | 7,32 | 0,49 | 6,14 | |
MOS | % | 2,67 | 1,62 | 4,00 | 0,56 | 20,13 |
Mn | mg kg-1 | 25,95 | 0,89 | 184,45 | 42,17 | 99,84 |
Fe | 8,81 | 1,56 | 45,70 | 8,62 | 73,21 | |
Co | 0,43 | 0,06 | 1,52 | 0,32 | 64,91 | |
Ni | 2,58 | 0,18 | 9,05 | 2,06 | 65,59 | |
Cu | 2,79 | 0,08 | 14,41 | 2,39 | 65,86 | |
Zn | 0,65 | 0,18 | 4,53 | 0,68 | 77,63 |
Med. Median; Min. minimum; Max. maximum; DS. standard deviation; CV. coefficient of variation
The distribution of available microelements in the surface horizon showed high variability in all elements, influenced by unfavorable hydrophysical properties, seasonal variation of chemical properties and oxidation-reduction processes in an environment of alternating humidity, characteristic of Vertisols. The surface analyzes showed that the order of abundance of the microelements was Mn > Fe > Cu > Ni > Zn > Co (Instituto de Suelos, 1975INSTITUTO DE SUELOS: Clasificación genética de los suelos de Cuba, Inst. Instituto de Suelos, Academia de Ciencias de Cuba, La Habana, Cuba, 28 p., 1975.).
The evaluative scenario where sugarcane develops on Vertisols describes that the effective depth varied from shallow to medium deep (Table 2). The slope from flat to undulating predominated, that favored an erosion among light and moderate. A clay texture prevailed with traces of silty clay, presence of smectitic minerals that conditioned drainage from imperfect to poorly drained and some areas with weakly saline features.
Effective depth | Slope | Erosion | ||||||
---|---|---|---|---|---|---|---|---|
Category | # | % | Category | # | % | Category | # | % |
Half Deep | 60 | 22,90 | Flat | 162 | 61,83 | Light | 149 | 56,87 |
Medium Deep | 202 | 77,10 | Waby | 100 | 38,17 | Moderate | 113 | 43,13 |
Texture | Drainage | Salinity | ||||||
Category | # | % | Category | # | % | Category | # | % |
Clay | 216 | 82,44 | Medium Well Drained | 31 | 11,83 | Not saline | 184 | 70,23 |
Silty Clay | 46 | 17,56 | Imperfectly Drained | 167 | 63,74 | Weakly saline | 78 | 29,77 |
------------------ | ---- | ---- | Poorly Drained | 64 | 24,43 | ------------------- | ---- | ---- |
Medium.Well Drained: Moderately Well Drained, Imperfect. Drained: Imperfectly Drained,
The results of the Canonical Correlation Analysis (CCA) showed the canonical correlations on two axes with high significance values (0,87 and 0,79). The low expression of the Willk Lamda (0,04 and 0,18) which means a greater precision of the relationship between the correlated canonical variables (U and V) (Table 3).
Axis value | Canonical Correlation | Wilks Lambda | Chi Square | df | p | |
---|---|---|---|---|---|---|
1 | 0,752 | 0,87 | 0,04 | 125,71 | 36 | 0,0000 |
2 | 0,617 | 0,79 | 0,18 | 69,22 | 25 | 0,0000 |
The factors with the greatest contribution to the total variance in the first axis were represented by Ni and Co (U1) influenced by salinity, slope, effective depth and texture (V1). In the second axis, drainage, slope and salinity (V2) were confirmed as limiting production that affected the availability of Zn (U2) (Table 4). Although a greater effective depth favors the concentration of available microelements, the conditions of slope relatively flat promote poor drainage that causes salinization in Vertisoils. In this regard, Guida-Johnson et al. (2017)GUIDA-JOHNSON, B.; ABRAHAM, E.M.; CONY, M.A.: “Salinización del suelo en tierras secas irrigadas: perspectivas de restauración en Cuyo, Argentina”, Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo, 49(1): 205-215, 2017, ISSN: 1853-8665. stated that salinity is generally associated with the presence of the mineralized water table, close to the surface, related to poor drainage problems.
First combination of variables | Second combination of variables | ||||||
---|---|---|---|---|---|---|---|
U1 | V1 | U2 | V2 | ||||
Ni | -0.9791 | Effective depth | -0.4583 | Ni | 0.1108 | Effective depth | 0.0704 |
Co | 1.0192 | Slope | -0.5030 | Co | -0.3969 | Slope | -0.5158 |
Fe | 0.2551 | Salinity | -1.0259 | Fe | -0.2194 | Salinity | 0.4132 |
Mn | 0.1980 | Erosion | 0.0937 | Mn | 0.3753 | Erosion | 0.2439 |
Zn | -0.2272 | Texture | 0.4667 | Zn | -0.6570 | Texture | -0.0488 |
Cu | 0.3992 | Drainage | 0.0342 | Cu | 0.2544 | Drainage | -0.7339 |
U= Set of available Microelements, V= Set of Limiting Factors
Highlighted the variables with the greatest contribution in each canonical correlation
In the second combination of canonical variables, the behavior of drainage, slope and salinity associated with water-soil relationships and geomorphology, negatively impact the availability of Zn. In the opinion of Herrera-Puebla et al. (2011)HERRERA-PUEBLA, J.; PUJOL-ORTIZ, R.; CID-LAZO, G.; MÉNDEZ, M.; ALARCÓN, R.: “Problemas del drenaje agrícola en Cuba”, Revista Ingeniería Agrícola, 1(1): 21-32, 2011, ISSN: 2306-1545.; Marín et al. (2015)MARÍN, M.R.; ARCIA, P.J.; VILLEGAS, D.R.; CHINE, H.A.; PÉREZ, E.: “Criterios básicos para el agrupamiento de suelos de mal drenaje cultivados con caña de azúcar”, En: Congreso Cubano de la Ciencia del Suelo 2015, La Habana, Cuba, 2015, ISBN: 978-959-296-039-8.; Cid et al. (2016)CID, L.G.; HERRERA, P.J.; LÓPEZ, S.T.; GONZÁLEZ, R.F.: “Resultados de algunas investigaciones en suelos Vérticos de Cuba”, Ingeniería Agrícola, 6(2): 51-56, 2016, ISSN: 2306-1545, e-ISSN: 2227-8761., the high distribution of Vertisuelos in the Cauto Valley and in the entire Eastern Region, except Guantánamo, with many of the areas affected by poor drainage and salinity, need the benefit of surface drainage, to achieve rapid evacuation of the water depending on the demand of the crop, depending on the soil, climate and topography. The dispersion between the limiting edaphic factors and the available microelements (Figure 1) was adjusted to a linear regression equation, with a high canonical correlation coefficient (r= 0.87) and a determination coefficient R2= 0,75, This means for which can be inferred that 75 % of the variation of the microelements available in the Vertisols is explained by the intensity with which the limiting factors of production considered in this study are manifested.
The physical and chemical properties of Vertisols can be improved or modified with appropriate agronomic management measures according to Torres-Guerrero et al. (2016)TORRES-GUERRERO, C.A.; GUTIÉRREZ-CASTORENA, M. del C.; ORTIZ-SOLORIO, C.A.; GUTIÉRREZ-CASTORENA, E.V.: “Manejo agronómico de los Vertisoles en México: una revisión”, Terra Latinoamericana, 34(4): 457-466, 2016, ISSN: 0187-5779.. The purposes are carry out soil preparation tasks according to the effective depth, prioritizing the non-inversion of the prism to minimize the incorporation of carbonates to the surface and thus avoid the adsorption of Cu and Zn by them. Use surface and subsurface engineered irrigation and drainage systems that favor the balance of oxidation-reduction processes and maintain the stability of the available forms of Fe and Mn. Maintain constant monitoring of the quality of irrigation water and the levels of the groundwater table to avoid the rise of salts to the horizons where roots predominate. It is considered to efficiently manage the waste coverage to increase the annual mineralization of the SOM that allows a large part of the absorbed Cu and Zn to be released into available forms. Alternatively apply biofertilizers or inoculants of microbial origin and exploit their capacity to mobilize nutrients with a minimum of non-renewable resources, accompanied by rational applications of biostimulants. Establish comprehensive research in Vertisols, which favors the displacement of microelements towards available forms, taking into account that there are no fertilization systems, based on these nutrients established in sugarcane.
CONCLUSIONS
⌅The results showed that there is a strong correlation between the limiting factors drainage, salinity, slope, effective depth, texture and the availability of Co, Ni and Zn. It is recommended to apply appropriate agronomic practices that improve physical fertility and favor the movement towards the available forms of microelements in Vertisols.