INTRODUCTION
⌅The physical, chemical, ecological and biological degradation of soils affect their organic matter (OM) content according to Lal (2020)LAL, R.: “Soil organic matter content and crop yield”, Journal of Soil and Water Conservation, 75(2): 27A-32A, 2020, ISSN: 0022-4561, Publisher: Soil and Water Conservation Society, DOI: https://doi.org/10.2489/jswc.75.2.27A. since it is linked to other physical, chemical and biological properties and processes that take place in the soil. Therefore, the OM content is a critical indicator of soil health due to the impact it produces on the aforementioned properties and processes (Doran & Zeiss, 2000DORAN, J.W.; ZEISS, M.R.: “Soil health and sustainability: managing the biotic component of soil quality”, Applied soil ecology, 15(1): 3-11, 2000, ISSN: 0929-1393, Publisher: Elsevier, DOI: https://doi.org/10.1016/S0929-1393(00)00067-6.; Lal, 2016LAL, R.: “Soil health and carbon management”, Food and Energy Security, 5(4): 212-222, 2016, ISSN: 2048-3694, Publisher: Wiley Online Library, DOI: https://doi.org/10.1002/fes3.96.).
As stated, the OM content therefore affects crop yields (Reeves, 1997REEVES, D.: “The role of soil organic matter in maintaining soil quality in continuous cropping systems”, Soil and Tillage Research, 43(1-2): 131-167, 1997, ISSN: 0167-1987, Publisher: Elsevier, DOI: https://doi.org/10.1016/S0167-1987(97)00038-X.). It is also known that the organic matter content is related to plant nutrition, to the global carbon cycle and it varies depending on the cropping system and climatic conditions (Romanyà & Rovira, 2011ROMANYÀ, J.; ROVIRA, P.: “An appraisal of soil organic C content in Mediterranean agricultural soils”, Soil Use and Management, 27(3): 321-332, 2011, ISSN: 0266-0032, Publisher: Wiley Online Library, DOI: https://doi.org/10.1111/j.1475-2743.2011.00346.x.; Mirzaee et al., 2016MIRZAEE, S.; GHORBANI-DASHTAKI, S.; MOHAMMADI, J.; ASADI, H.; ASADZADEH, F.: “Spatial variability of soil organic matter using remote sensing data”, Catena, 145: 118-127, 2016, ISSN: 0341-8162, Publisher: Elsevier, DOI: http://dx.doi.org/10.1016/j.catena.2016.05.023.). For all the above, the OM content is considered as an indicator of soil fertility (Shibu et al., 2006SHIBU, M.; LEFFELAAR, P.; VAN KEULEN, H.; AGGARWAL, P.: “Quantitative description of soil organic matter dynamics-A review of approaches with reference to rice-based cropping systems”, Geoderma, 137(1-2): 1-18, 2006, ISSN: 0016-7061, Publisher: Elsevier, DOI: https://doi.org/10.1016/j.geoderma.2006.08.00.).
The traditional method for determining OM is that of Walkley & Black (1934)WALKLEY, A.; BLACK, I.A.: “An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method”, Soil science, 37(1): 29-38, 1934, ISSN: 0038-075X, Publisher: LWW, DOI: https://doi:10.1097/00010694-193401000-00003., however, for its use in large areas, it is a method that requires reagents and time of the samples in the laboratory, so it would be convenient to use methods indirect that allow their estimation once they are calibrated and validated.
In the 1990s, with the advancement of Geographic Information Systems (GIS) and remote sensing, new techniques have emerged to map the organic matter content of the soils through the use of multispectral images obtained from satellites (Gomez et al., 2008GOMEZ, C.; ROSSEL, R.A.V.; MCBRATNEY, A.B.: “Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study”, Geoderma, 146(3-4): 403-411, 2008, ISSN: 0016-7061, Publisher: Elsevier, DOI: https://doi.org/10.1016/j.geoderma.2008.06.011.; Sanka-Bhunia et al., 2019SANKAR-GOURI., G.; KUMAR-SHIT, P.; REZA-POURGHASEMI, H.: “Soil organic carbon mapping using remote sensing techniques and multivariate regression model”, Geocarto International, 34(2): 215-226, 2019, ISSN: 1010-6049, Publisher: Taylor & Francis, DOI: https://doi.org/10.1080/10106049.2017.1381179.).
The bands of the multispectral images most used for the determination of the organic matter content are infrared and red because it is a non-destructive, fast and reproducible physical method that has been extended to the prediction of other physical and biological properties of the soil (Wang et al., 2018WANG, X.; ZHANG, F.; JOHNSON, V.C.: “New methods for improving the remote sensing estimation of soil organic matter content (SOMC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR) in northwest China”, Remote Sensing of Environment, 218: 104-118, 2018, ISSN: 0034-4257, Publisher: Elsevier, DOI: https://doi.org/10.1016/j.rse.2018.09.020.). Research has shown the feasibility of using images from Landsat TM and LiDAR satellites to predict soil properties at different scales (Rasel et al., 2017RASEL, S.; GROEN, T.A.; HUSSIN, Y.A.; DITI, I.J.: “Proxies for soil organic carbon derived from remote sensing”, International journal of applied earth observation and geoinformation, 59: 157-166, 2017, ISSN: 1569-8432, Publisher: Elsevier, DOI: http://dx.doi.org/10.1016/j.jag.2017.03.004.).
In Holguín Municipality, Cuba, there is an area of 100 ha dedicated to rice cultivation which, in the future, could be extended to another 2000 ha in the same region depending on the fertility of these soils. Therefore, considering the OM content as an indicator to know the initial state of soil fertility in this region, in the present research, the study of the relationship of spectral index obtained from Landsat 9 images with the contents of OM. determined in the laboratory is carried out. The results obtained could be used for estimations in areas with the same characteristics as the one studied. In addition, the study of the spatial structure of the OM is carried out since the correct description of its spatial dependence is essential to know its degree of spatial continuity and the structure of its variability.
MATERIALS AND METHODS
⌅The area selected for the investigation belongs to Guatemala Agricultural Company, CCS “Tomás Machado” in Cosme Herrera Town, located at 20°44'54,601"N and 75°50'43,743"W of Mayarí Municipality, Holguín Province (Figure 1). In it, more than 100 ha are dedicated to rice cultivation with very low productive results of 0.63 t·ha-1, due to that, it has been fallow for three consecutive years, which could have improved its physical condition to be used in rice planting.
In the area of 100 ha mentioned above, a systematic sampling was carried out at 100 georeferenced points with a GPS with an appreciation of 3 m, at a distance between points of 100 m. The characteristic soil of the area is of the Chromic Vertisol type according to Hernández et al. (2015HERNÁNDEZ, J.A.; PÉREZ, J.J.M.; MESA, N.A.; BOSCH, I.D.; RIVERO, L.; CAMACHO, E.: Nueva versión de la clasificación genética de los suelos de Cuba., Ed. AGRINFOR, La Habana, Cuba, ISBN: 959-246-022-1, Barcaz L L ed., vol. I, La Habana, Cuba, 64 p., 2015, ISBN: 959-246-022-1., 2019)HERNÁNDEZ-JIMÉNEZ, A.; PÉREZ-JIMÉNEZ, J.M.; BOSCH-INFANTE, D.; SPECK-CASTRO, N.: “La clasificación de suelos de Cuba: énfasis en la versión de 2015”, Cultivos Tropicales, 40(1), 2019, ISSN: 0258-5936, Publisher: Ediciones INCA. with a slope of 2 %, so it can be considered flat. The samples were taken in the depth range between 0 to 0.20 m since the approximations made by spectral information from satellites to determine soil OM content have presented, in most of the studies, more precise relationships when samples are taken in situ in this depth range (Denis et al., 2014DENIS, A.; STEVENS, A.; VAN WESEMAEL, B.; UDELHOVEN, T.; TYCHON, B.: “Soil organic carbon assessment by field and airborne spectrometry in bare croplands: Accounting for soil surface roughness”, Geoderma, 226: 94-102, 2014, ISSN: 0016-7061, Publisher: Elsevier, DOI: https://doi.org/10.1016/j.geoderma.2014.02.015.; Angelopoulou et al., 2020ANGELOPOULOU, T.; BALAFOUTIS, A.; ZALIDIS, G.; BOCHTIS, D.: “From laboratory to proximal sensing spectroscopy for soil organic carbon estimation-A review”, Sustainability, 12(2): 443, 2020, ISSN: 2071-1050, Publisher: MDPI, DOI: https://doi.org/10.3390/su12020443.).
The analysis of the organic matter content was carried out in Camagüey Base Unit of Science and Technology following the Cuban Standard for the determination of soil organic compounds (Norma Cubana (NC), 2014NORMA CUBANA (NC): Calidad del suelo-determinación de loscomponentes orgánicos. No. 1043. ICS: 13.080.10, 13.080.30, Inst. Oficina Nacional de Normalización, Norma cubana, La Habana, Cuba, 2014.).
Geostatistical Analysis
⌅An exploratory data analysis was initially performed on the values obtained for organic matter, beginning with a univariate description. Measures of location, dispersion and shape were calculated, as well as the histogram and the normality curve. Structural analysis (variogram) of the data was performed to investigate if the values showed a spatial structure that would allow the use of the kriging interpolation technique, considered the best unbiased linear estimator (Cressie, 1990CRESSIE, N.: “The origins of kriging”, Mathematical geology, 22: 239-252, 1990, ISSN: 0882-8121, Publisher: Springer, DOI: https://doi.org/10.1007/978-3-319-78999-6.). Interpolation was performed by kriging to obtain maps of organic matter content at unmeasured points. Surfer 8 software (Golden Software, Inc.) was used.
The experimental semivariogram γ (h) was obtained from expression (1) (Journel & Huijbregts, 1978JOURNEL, A.G.; HUIJBREGTS, C.J.: Mining geostatistics, Ed. Academic Press, London, England, 600 p., 1978.).
Where Np(h) is the number of pairs of observations separated by distance h, Z(xi) is the value of the variable at site xi and Z(xi + h) is the value of the variable at a site located at a distance h from site xi.
The adjustment of the experimental semivariogram to theoretical models was carried out, obtaining the one with the best adjustment according to the methodology proposed by Legrá-Lobaina & Atanes-Beatón (2010)LEGRÁ-LOBAINA, A.A.; ATANES-BEATÓN, D.M.: “Variogramas adaptativos: un método práctico para aumentar la utilidad del error de estimación por kriging”, Minería y Geología, 26(4): 53-78, 2010, ISSN: 1993-8012, Publisher: Instituto Superior Minero Metalúrgico de Moa’Dr Antonio Nuñez Jiménez’.. In this, the semivariogram is generated from the adaptation of its scope, plateau, nugget effect and its model, which allows obtaining local corrections of the variability of the magnitude under study.
Once the theoretical model was established, the values of the nugget effect (Co) were found, which is the lowest value of the semivariance and the maximum semivariance (C0 + C1). On the other hand, C1 is the difference between the maximum semivariance and the value of the pip effect. In order to quickly obtain quantitative information on the spatial dependence of the OM variable, the Degree of Spatial Dependence (GDE) proposed by Cambardella et al. (1994)CAMBARDELLA, C.A.; MOORMAN, T.; NOVAK, J.; PARKIN, T.; KARLEN, D.; TURCO, R.; KONOPKA, A.: “Field‐scale variability of soil properties in central Iowa soils”, Soil science society of America journal, 58(5): 1501-1511, 1994, ISSN: 0361-5995, Publisher: Wiley Online Library, DOI: https://doi.org/10.2136/sssaj1994.03615995005800050033x., was also calculated, which is defined by expression (2) .
Seidel & Oliveira (2014)SEIDEL, E.J.; OLIVEIRA, M.S.: “Novo índice geoestatístico para a mensuração da dependência espacial”, Revista Brasileira de Ciência do Solo, 38: 699-705, 2014, ISSN: 1806-9657, Publisher: SciELO Brasil, DOI: https://doi.org/10.1590/S0100-06832014000300002 propose the following categories for the GDE: strong spatial dependence (GDE > 75 %), moderate spatial dependence (25 <GDE ≤ 75 %) and weak spatial dependence (GDE ≤ 25 %). To also take into account the effect of the model used to fit the experimental variogram as well as all the other characteristics of the semivariogram, the spatial dependence index of the model (IDE) proposed by Seidel & Oliveira (2014)SEIDEL, E.J.; OLIVEIRA, M.S.: “Novo índice geoestatístico para a mensuração da dependência espacial”, Revista Brasileira de Ciência do Solo, 38: 699-705, 2014, ISSN: 1806-9657, Publisher: SciELO Brasil, DOI: https://doi.org/10.1590/S0100-06832014000300002 and Seidel & Oliveira (2016)SEIDEL, E.J.; OLIVEIRA, M.S.: “A classification for a geostatistical index of spatial dependence”, Revista Brasileira de Ciência do Solo, 40, 2016, ISSN: 1806-9657, Publisher: SciELO Brasil., which is given by the following expressions for the spherical, exponential and Gaussian models, respectively.
Where the practical range is a. MD is the maximum distance. The coefficients that appear at the beginning of each model according to Seidel & Oliveira (2014)SEIDEL, E.J.; OLIVEIRA, M.S.: “Novo índice geoestatístico para a mensuração da dependência espacial”, Revista Brasileira de Ciência do Solo, 38: 699-705, 2014, ISSN: 1806-9657, Publisher: SciELO Brasil, DOI: https://doi.org/10.1590/S0100-06832014000300002, are known as the Model Factor (FM) and express the strength of the special dependency that a given model can achieve, so the higher its value, the greater the strength of the spatial dependency of the model. Seidel & Oliveira (2016)SEIDEL, E.J.; OLIVEIRA, M.S.: “A classification for a geostatistical index of spatial dependence”, Revista Brasileira de Ciência do Solo, 40, 2016, ISSN: 1806-9657, Publisher: SciELO Brasil. propose, according to the IDE values, the classification presented in Table 1.
Model | Spatial dependence Index (IDE %) | ||
---|---|---|---|
Strong | Moderate | Weak | |
Spherical | > 15 | Entre 7 y 15 | ≤ 7 |
Exponential | >13 | Entre 6 y 13 | ≤ 6 |
Gaussian | > 20 | Entre 9 y 20 | ≤ 9 |
Satellite Image Processing
⌅An image of April 26, 2022, belonging to the Landsat 9 OLI/TIRS 2 satellite (LC09_L2SP_011046_20220426_20220428_02_T1) of the United States Geological Survey on path 011 row 046 was used and was projected on the WGS 84 System UTM Zone 18 North in the QGIS 3.10 “A Coruña” software and spectral index of soil and vegetation were determined (Table 2), after performing the atmospheric correction to eliminate the effect of clouds on the image.
Spectral Index | Equation | Reference |
---|---|---|
Normalized Difference Vegetation Index Vegetación (NDVI) | (7) Rouse et al. (1974)ROUSE, J.W.; HAAS, R.H.; SCHELL, J.A.; DEERING, D.W.: Monitoring vegetation systems in the Great Plains with ERTS, Third ERTS Symposium, NASA SP-351 ed., vol. NASA SP-351, 309-371 p., 1974, ISBN: 30103017. | |
Clay index (CI) | (8) Boettinger et al. (2008)BOETTINGER, J.; RAMSEY, R.; BODILY, J.; COLE, N.; KIENAST-BROWN, S.; NIELD, S.; SAUNDERS, A.; STUM, A.: Landsat spectral data for digital soil mapping, Ed. Digital soil mapping with limited data Australia: Springer Scienc, A.E. Hartemink, A.B. McBratney, M.L. Mendonca-Santo ed., Australia, publisher: Springer, 2008, ISBN: 978-1-4020-8591-8. | |
Soil Adjusted Vegetation Index (SAVI) | (9) Huete (1988)HUETE, A.R.: “A soil-adjusted vegetation index (SAVI)”, Remote sensing of environment, 25(3): 295-309, 1988, ISSN: 0034-4257, Publisher: Elsevier, DOI: https://doi.org/10.1016/0034-4257(88)90106-X. |
L=1 effect of soil correction; BNIR is the infrared band of the sensor; BRed is the red band of the sensor; SWIR2 is the shortwave infrared band of the sensor.
For the extraction of the digital values of the image, the layer of sampling points was used in the ArcGIS 10.5 software and an Excel database was created with said information for each calculated spectral index. In the Statgraphics Plus software, the exploratory and linear regression analysis was carried out between the values of OM and the spectral index of soil and vegetation.
RESULTS AND DISCUSSION
⌅Exploratory Analysis of the Variables under Study
⌅Table 3 shows the statistics of the variables analyzed. The average OM content was found to be 3.81 % with minimum and maximum values of 1.65 % and 6.75 %, respectively. That could be associated with the fact that the area has remained fallow for three years and the possible presence of grazing animals at some points, which leads to the incorporation of OM into the soil by the decomposition of their excreta.
The median showed a trend of 3.74% with a standard deviation of 1.25%, with a standard error in its determination of 0.12% in the permissible ranges in which the unit of measurement of this property oscillates. The coefficient of variation indicated that the values of OM vary moderately for 32.80% according to Wilding (1985)WILDING, L.: “Spatial variability: its documentation, accomodation and implication to soil surveys”, En: Soil spatial variability, Las Vegas NV, 30 November-1 December 1984, Netherlands, pp. 166-194, 1985, ISBN: 90-220-0891-6.. Alexakis et al. (2019)ALEXAKIS, D.D.; TAPOGLOU, E.; VOZINAKI, A.E.K.; TSANIS, I.K.: “Integrated use of satellite remote sensing, artificial neural networks, field spectroscopy, and GIS in estimating crucial soil parameters in terms of soil erosion”, Remote Sensing, 11(9): 1106, 2019, ISSN: 2072-4292, Publisher: MDPI, DOI: https://doi.org/10.3390/rs11091106. refer that the coefficient of variation reflects the distribution of each soil property and can have characteristic spatial patterns for each experimental area. Ayoubi et al. (2011)AYOUBI, S.; SHAHRI, A.; KARCHEGANI, P.A.; SAHRAWAT, K.L.: Application of artificial neural network (ANN) to predict soil organic matter using remote sensing data in two ecosystems, Ed. InTech Rijeka, Croatia, vol. Biomass and Remote Sensing of Biomass, 181-196 p., 2011, ISBN: 978-953-307-490-0. obtained a moderate variation with a coefficient of variation of 32 % and 34 % in the sites where they sampled the OM content and refer that this variation depends on the accumulation of water on the soil cover.
The asymmetry and kurtosis, both in the OM content of the soil and in the determined spectral index, is in the range of -1 to 1 which indicates that the values do not follow a normal distribution (López-Granados et al., 2005LÓPEZ-GRANADOS, F.; JURADO-EXPÓSITO, M.; PEÑA-BARRAGÁN, J.M.; GARCÍA-TORRES, L.: “Using geostatistical and remote sensing approaches for mapping soil properties”, European Journal of Agronomy, 23(3): 279-289, 2005, ISSN: 1161-0301, Publisher: Elsevier, DOI: https://doi.org/10.1016/j.eja.2004.12.003.).
Property | Mean | SD | SE (%) | CV | Min. | Max. | Median | Asymmetry | Kurtosis |
---|---|---|---|---|---|---|---|---|---|
OM | 3.81 | 1.25 | 0.12 | 32.80 | 1.65 | 6.75 | 3.74 | 0.49 | -0.17 |
NDVI | 0.26 | 0.06 | 0.01 | 21.74 | 0.11 | 0.43 | 0.25 | 0.34 | 0.89 |
SAVI | 0.52 | 0.11 | 0.01 | 21.74 | 0.22 | 0.85 | 0.51 | 0.34 | 0.89 |
CI | 1.32 | 0.04 | 3.5E-03 | 2.67 | 1.21 | 1.39 | 1.32 | -0.74 | 0.96 |
OM: organic matter; SD: standard deviation; SE: standard error; CV: coefficient of variation; Min: minimum; Max: maximum.
The average value of NDVI was found to be 0.26, which ranges from -1 to 1 and agrees with what was stated by Rawashdeh (2012)RAWASHDEH, A.S.B.: “Assessment of change detection method based on normalized vegetation index in environmental studies”, International Journal of Applied Science and Engineering, 10(2): 89-97, 2012, ISSN: 1727-7841, Publisher: Chaoyang University of Technology. that for this index, values from 0 to 0.5, there is scarce vegetation and coincides with the current state of the study area. The SAVI vegetation index reported an average of 0.52, closely related to the average index obtained from NDVI and the corresponding vegetation status classification.
Joko-Prasetyo et al. (2020)JOKO-PRASETYO, S.Y.; DWI, K.; CHRISMAWATI-PASELENG, M.; WIDIYANTO, D.C.; WINARKO, E.: “Satellite imagery and machine learning for aridity disaster classification using vegetation indices”, Bulletin of Electrical Engineering and Informatics, 9(3): 1149-1158, 2020, ISSN: 2302-9285, DOI: https://doi.org/10.11591/eei.v9i3.1916. use the NDVI and SAVI as indicators of the state of aridity in Indonesia, obtaining values similar to those found in this research and pointing out that they are areas with low vegetation cover where photosynthetic activity is decreasing and, therefore, the values fluctuate between 0.1 and 0.5.
In line with the type of soil in the study area (Vertisol), characterized by having a high content of monmorillonite-type clays (Hernández et al., 2015HERNÁNDEZ, J.A.; PÉREZ, J.J.M.; MESA, N.A.; BOSCH, I.D.; RIVERO, L.; CAMACHO, E.: Nueva versión de la clasificación genética de los suelos de Cuba., Ed. AGRINFOR, La Habana, Cuba, ISBN: 959-246-022-1, Barcaz L L ed., vol. I, La Habana, Cuba, 64 p., 2015, ISBN: 959-246-022-1., 2019HERNÁNDEZ-JIMÉNEZ, A.; PÉREZ-JIMÉNEZ, J.M.; BOSCH-INFANTE, D.; SPECK-CASTRO, N.: “La clasificación de suelos de Cuba: énfasis en la versión de 2015”, Cultivos Tropicales, 40(1), 2019, ISSN: 0258-5936, Publisher: Ediciones INCA.), the CI yielded mean values greater than 1 with 1.32. The results obtained coincide with what was stated by Boettinger et al. (2008)BOETTINGER, J.; RAMSEY, R.; BODILY, J.; COLE, N.; KIENAST-BROWN, S.; NIELD, S.; SAUNDERS, A.; STUM, A.: Landsat spectral data for digital soil mapping, Ed. Digital soil mapping with limited data Australia: Springer Scienc, A.E. Hartemink, A.B. McBratney, M.L. Mendonca-Santo ed., Australia, publisher: Springer, 2008, ISBN: 978-1-4020-8591-8. who report that the multispectral images of the Landsat satellite in its near-infrared bands can be used to identify the parent material of the soil.
Geostatistical Analysis
⌅Figure 2 illustrates the experimental and theoretical semivariogram of the values obtained from OM in the study area, which had a better fit to an exponential model, agreeing with studies previously carried out by Reza et al. (2016)REZA, S.; NAYAK, D.; CHATTOPADHYAY, T.; MUKHOPADHYAY, S.; SINGH, S.; SRINIVASAN, R.: “Spatial distribution of soil physical properties of alluvial soils: a geostatistical approach”, Archives of agronomy and soil science, 62(7): 972-981, 2016, ISSN: 0365-0340, Publisher: Taylor & Francis, DOI: https://doi.org/10.1080/03650340.2015.1107678.; Bogunovic et al. (2017)BOGUNOVIC, I.; KISIC, I.; MESIC, M.; PERCIN, A.; CAÑIZARES, Z.J.; BILANDŽIJA, D.; JONJIC, A.; PEREIRA, P.: “Reducing sampling intensity in order to investigate spatial variability of soil pH, organic matter and available phosphorus using co-kriging techniques. A case study of acid soils in Eastern Croatia”, Archives of Agronomy and Soil Science, 63(13): 1852-1863, 2017, ISSN: 0365-0340, ublisher: Taylor & Francis, DOI: https://doi.org/10.1080/03650340.2017.1311013.; Durdevic et al. (2019)DURDEVIC, B.; JUG, I.; JUG, D.; BOGUNOVIC, I.; VUKADINOVIC, V.; STIPESEVIC, B.; BROZOVIC, B.: “Spatial variability of soil organic matter content in Eastern Croatia assessed using different interpolation methods”, International Agrophysics, 33(1), 2019, ISSN: 0236-8722, Publisher: Polska Akademia Nauk. Instytut Agrofizyki PAN, DOI: https://doi.org/10.31545/intagr/104372.. They report that most of the soil properties, when performing a structural analysis, have a better fit to an exponential model.
Jian-Bing et al. (2006)JIAN-BING, W.; DU-NING, X.; XING-YI, Z.; XIU-ZHEN, L.; XIAO-YU, L.: “Spatial variability of soil organic carbon in relation to environmental factors of a typical small watershed in the black soil region, northeast China”, Environmental monitoring and assessment, 121: 597-613, 2006, ISSN: 0167-6369, Publisher: Springer, DOI: https://doi.org/10.1007/s10661-005-9158-5. and Rawashdeh (2012)RAWASHDEH, A.S.B.: “Assessment of change detection method based on normalized vegetation index in environmental studies”, International Journal of Applied Science and Engineering, 10(2): 89-97, 2012, ISSN: 1727-7841, Publisher: Chaoyang University of Technology. when studying the spatial variability of chemical properties of the soil, obtained similar results. They refer that OM, pH, electrical conductivity, assimilable potassium and total carbonate had a better fit to an exponential model. In Figure 2, according to the obtained range of 600 m, it can be established that in samples taken at distances less than this one, their values will be spatially related, while those taken at greater distances are not related, due to the fact that the semivariance is made equal to the sample variance (Kerry & Oliver, 2007KERRY, R.; OLIVER, M.: “Comparing sampling needs for variograms of soil properties computed by the method of moments and residual maximum likelihood”, Geoderma, 140(4): 383-396, 2007, ISSN: 0016-7061, Publisher: Elsevier, DOI: https://doi.org/10.1016/j.geoderma.2007.04.019.).
The degree of spatial dependence (GDE) was 43.75%, which corresponds to the classification proposed previously by Cambardella et al. (1994)CAMBARDELLA, C.A.; MOORMAN, T.; NOVAK, J.; PARKIN, T.; KARLEN, D.; TURCO, R.; KONOPKA, A.: “Field‐scale variability of soil properties in central Iowa soils”, Soil science society of America journal, 58(5): 1501-1511, 1994, ISSN: 0361-5995, Publisher: Wiley Online Library, DOI: https://doi.org/10.2136/sssaj1994.03615995005800050033x. as moderate spatial dependence (25 <GDE ≤ 75%) and according to the classification of the effect of the adjusted exponential model, an SDI value of 16.36 % implies a strong spatial dependence (Table 1) as it is greater than 13 %. These values reflect that the spatial dependence is controlled by intrinsic and extrinsic factors influenced by inappropriate agricultural practices in the soil (Liu et al., 2014LIU, Z.; ZHOU, W.; SHEN, J.; HE, P.; LEI, Q.; LIANG, G.: “A simple assessment on spatial variability of rice yield and selected soil chemical properties of paddy fields in South China”, Geoderma, 235: 39-47, 2014, ISSN: 0016-7061, Publisher: Elsevier, DOI: https://doi.org/10.1016/j.geoderma.2014.06.027.). The existing spatial structure allows the use of kriging as an interpolation technique that will allow the preparation of the OM map by estimating values at unmeasured points.
Figure 3 shows the distribution of the OM content obtained by kriging, where the highest values of OM are found to the north with darker tones in an irregular transept in the study area while the lowest values are in the center with lighter shades. It is possible that these higher OM values in this area are associated with the presence of peasant cattle as the area is fallow.
Relationships between Spectral Index and Organic Matter Content
⌅Table 4 presents the statistics of the linear regression analysis between the OM content of the soil and the spectral index of soil and vegetation. There is a high correlation of 0.98 between the OM content of the soil, the NDVI and the SAVI, which may be because both indexes use the red and infrared bands of the sensor for their determination.
The CI had a correlation of 0.94 with respect to the OM content of the soil. The determination coefficient yielded values close to 100%, the NDVI model vs. O.M (%) 95.61%, SAVI vs. O.M (%) 95.66% and CLAY INDEX vs. O.M (%) of 88.92 %. Therefore, it can be affirmed that the spectral index used can predict the OM content, with an error in its forecast in all cases within the permissible ranges in which the determined variables are measured (Ayoubi et al., 2011AYOUBI, S.; SHAHRI, A.; KARCHEGANI, P.A.; SAHRAWAT, K.L.: Application of artificial neural network (ANN) to predict soil organic matter using remote sensing data in two ecosystems, Ed. InTech Rijeka, Croatia, vol. Biomass and Remote Sensing of Biomass, 181-196 p., 2011, ISBN: 978-953-307-490-0.).
Correlation coefficient close to 1.0; of 0.86 and 0.90 were found by Wang et al. (2018)WANG, X.; ZHANG, F.; JOHNSON, V.C.: “New methods for improving the remote sensing estimation of soil organic matter content (SOMC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR) in northwest China”, Remote Sensing of Environment, 218: 104-118, 2018, ISSN: 0034-4257, Publisher: Elsevier, DOI: https://doi.org/10.1016/j.rse.2018.09.020. with the use of Landsat 8 OLI/TIRS images with the processing of the red and infrared bands of the sensor, they obtained a strong determination of 92 % in the relationship between the OM content of the soil and the combination of sensor bands.
Statistics | NDVI vs. O.M (%) | SAVI vs. O.M (%) | CLAY INDEX vs. O.M (%) |
---|---|---|---|
r2 | 0.98 | 0.98 | 0.94 |
R2 | 95.61 | 95.66 | 88.92 |
Standard Error | 0.26 | 0.26 | 0.01 |
EAM | 0.19 | 0.19 | 0.01 |
Durbin-Watson | 2.26 (P=0.08) | 2.26 (P=0.08) | 1.96 (P=0.37) |
Equation of the model | OM = -1.78 + 21.68*NDVI | OM = -1.78 + 10.84*SAVI | OM= 1.22 + 0.03*CI |
r2: Correlation coefficient; R2: Coefficient of determination; EAM: Mean Absolute Error.
Xu et al. (2023)XU, X.; DU, C.; MA, F.; QIU, Z.; ZHOU, J.: “A Framework for High-Resolution Mapping of Soil Organic Matter (SOM) by the Integration of Fourier Mid-Infrared Attenuation Total Reflectance Spectroscopy (FTIR-ATR), Sentinel-2 Images, and DEM Derivatives”, Remote Sensing, 15(4): 1072, 2023, ISSN: 2072-4292, Publisher: MDPI, DOI: https://doi.org/10.3390/rs15041072. report that the use of remote sensing establishes a strong relationship between the data captured by the sensor and the OM of the soil with a strong linear relationship between the NDVI variables and index obtained by a digital elevation model (DEM), while no positive relationship was found with the Sentinel 2 spectral bands. Previous studies have shown that the relationship of soil OM content through remote sensing cannot be seen as a methodology that is generalized to various environments, but rather which is unique for each study site, and depends on the type of sensor used, the characteristics of the soil, the relief and the climate (Lamichhane et al., 2019LAMICHHANE, S.; KUMAR, L.; WILSON, B.: “Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review”, Geoderma, 352: 395-413, 2019, ISSN: 0016-7061, V, DOI: https://doi.org/10.1016/j.geoderma.2019.05.031.).
On the other hand, Prudnikova & Savin (2021)PRUDNIKOVA, E.; SAVIN, I.: “Some peculiarities of arable soil organic matter detection using optical remote sensing data”, Remote Sensing, 13(12): 2313, 2021, ISSN: 2072-4292, Publisher: MDPI, DOI: https://doi.org/10.3390/rs13122313. found a negative relationship between the CI and the OM content of the soil with a coefficient of determination for the rainy season of 81 % and of 84 % in the dry season, respectively when using Sentinel 2 to estimate the OM content of an Albic Luvisols in Russia.
There are references to other investigations in which estimates of the organic carbon content of the soil are made (Sodango et al., 2021SODANGO, T.H.; SHA, J.; LI, X.; NOSZCZYK, T.; SHANG, J.; ANESEYEE, A.B.; CHAFIK, Z.: “Modeling the spatial dynamics of soil organic carbon using remotely-sensed predictors in Fuzhou city, China”, Remote Sensing, 13(9): 1682, 2021, ISSN: 2072-4292, Publisher: MDPI, DOI: https://doi.org/10.3390/rs1309168.). This chemical element derived from the OM content of the soil (Rasel et al., 2017RASEL, S.; GROEN, T.A.; HUSSIN, Y.A.; DITI, I.J.: “Proxies for soil organic carbon derived from remote sensing”, International journal of applied earth observation and geoinformation, 59: 157-166, 2017, ISSN: 1569-8432, Publisher: Elsevier, DOI: http://dx.doi.org/10.1016/j.jag.2017.03.004.) is estimated from spectral vegetation index, in which, when using the NDVI with mean values of 0.49 (dense vegetation) a correlation of 0.74 is reached (Sankar-Gouri. et al., 2019SANKAR-GOURI., G.; KUMAR-SHIT, P.; REZA-POURGHASEMI, H.: “Soil organic carbon mapping using remote sensing techniques and multivariate regression model”, Geocarto International, 34(2): 215-226, 2019, ISSN: 1010-6049, Publisher: Taylor & Francis, DOI: https://doi.org/10.1080/10106049.2017.1381179.).
CONCLUSIONS
⌅Organic matter showed mean values of 3.81 % with adjustment of the experimental semivariogram to an exponential model with a degree of spatial dependence (GDE) of 43.75 % (moderate spatial dependence) and a strong index of spatial dependence according to the model used (IDE model ) of 16.36 %. The highest OM values were found to the north of the area. The use of the NDVI, SAVI and CI spectral index showed linear regression analysis statistics that make it possible to estimate the organic matter content of the soil. Correlation values of 0.98 were found for the NDVI and the SAVI while for the CI it was 0.94, while the determination showed values close to 100%. The results obtained in this research demonstrate the potential of remote sensing as a feasible and low cost tool in its acquisition for the estimation of soil OM in Vertisol chromic soil on fallow.