INTRODUCTION
⌅Soil tillage has always been a major research area in agriculture. As a tillage operation is a procedure for breaking up soil, soil failure depends mainly upon the soil properties, tool geometry and cutting speed (Abu & Reeder, 2003ABU, H.N.H.; REEDER, R.C.: “A nonlinear 3D finite element analysis of the soil forces acting on a disc plow”, Soil & Tillage Research, (74): 115-124, 2003, ISSN: 0167-1987.). The speed effects of the farming tool on the soil, both static and dynamic, and their influence in the cutting forces has been analyzed by several investigators (Ibrahmi et al., 2015IBRAHMI, A.; BENTAHER, H.; HBAIEB, M.; MAALEJ, A.; MOUAZEN, A.M.: “Study the effect of tool geometry and operational conditions on mouldboard plough forces and energy requirement: Part 1. Finite element simulation”, Computers and Electronics in Agriculture, 117: 258-267, 2015, ISSN: 0168-1699.; Lamia et al., 2020LAMIA, A.A.D.; EL-HADDAD, Z.A.; AFIFY, M.T.: “Modeling the effect of soil-tool interaction on draft force using visual basic”, Annals of Agricultural Science, Moshtohor, 58(2): 223-232, 2020, ISSN: 1110-0419, ISSN 1110-041, Disponible en:https://assjm.journals.ekb.eg.). The MEF has shown to be able to simulate different forms of farming tools and the dynamic effects of the forward speed (Abu & Reeder, 2003ABU, H.N.H.; REEDER, R.C.: “A nonlinear 3D finite element analysis of the soil forces acting on a disc plow”, Soil & Tillage Research, (74): 115-124, 2003, ISSN: 0167-1987.; Marín et al., 2011MARÍN, C.L.O.; LEYVA, S.O.; HERRERA, S.M.: “Efecto del modo de vibración y la velocidad de trabajo en la disminución de la resistencia traccional de los órganos escarificadores vibratorios”, Revista Ciencias Técnicas Agropecuarias, 20(3): 57-62, 2011, ISSN: 1010-2760, e-ISSN: 2071-0054.).
The Finite Element Method (FEM) is a numerical technique for analyzing the complex engineering problems, especially for dynamic systems with large deformation and failure (Rosa & Wulfsohn, 2002ROSA, U.; WULFSOHN, D.: “Application of the finite element method in agricultural soil mechanics”, En: Advances in Soil Dynamics Volume 2, Ed. American Society of Agricultural and Biological Engineers, p. 117, 2002, ISBN: 1-892769-82-4.). This method has been used by numerous researchers to analyze problems related to soil mechanics and the interaction between soil and tillage tools (Abo et al., 2003ABO, E.M.; HAMILTON, R.; BOYLE, J.T.: “3D Dynamic analysis of soil-tool interaction using the finite element method”, Journal of Terramechanics, 40(1): 51-62, 2003, ISSN: 0022-4898.; 2004ABO, E.M.; HAMILTON, R.; BOYLE, J.: “Simulation of soil-blade interaction for sandy soil using advanced 3D finite element analysis”, Soil and Tillage Research, 75(1): 61-73, 2004, ISSN: 0167-1987.; Gebregziabher et al., 2007GEBREGZIABHER, S.; MOUAZEN, A.M.; VAN BRUSSEL, H.; RAMON, H.; MERESA, F.; VERPLANCKE, H.; NYSSEN, J.; BEHAILU, M.; DECKERS, J.; ALBURQUERQUE, J.A.: “Design of the Ethiopian ard plough using structural analysis validated with finite element analysis”, Biosystems Engineering, 97(1): 27-39, 2007, ISSN: 1537-5110.; Topakci et al., 2010TOPAKCI, M.; CELIK, H.K.; CANAKCI, M.; RENNIE, A.; AKINCI, I.; KARAYEL, D.: “Deep tillage tool optimization by means of finite element method: Case study for a subsoiler tine”, Journal of Food, Agriculture and Environment, 8(2): 531-536, 2010, ISSN: 1459-0255.). However, for an accurate modeling of soil working implement, important physical and mechanical properties of soil should also be taken into account (Hesar & Kalantari, 2016HESAR, H.D.; KALANTARI, D.: “Design a biomimetic disc using geometric features of the claws”, Agricultural Engineering International: CIGR Journal, 18(1): 103-109, 2016, ISSN: 1682-1130.).
The objective of this study is to analyze the prediction of the cutting forces behavior in the direction of forward movement of the farming tool (vibratory subsoiler), tilling a silt loam soil (ferralitic) with forward speed and work depth assigned, as well as physical and mechanical properties of soil (humidity, density) determined.
MATERIAL AND METHODS
⌅Model of Soil
⌅The lineal form of the extended Drucker-Prager model, according to De la Rosa et al.( 2016)DE LA ROSA, A.A.A.; QUINTEROS, A.P.R.; GONZÁLEZ, C.O.; RODRÍGUEZ, M.A.; HERRERA, S.M.: “Adjustment of the plastic parameters of the Extended Drucker Prager model for the simulation of the mechanical response of a clayey soil (Vertisol)”, Revista Ciencias Técnicas Agropecuarias, 25(3): 4-12, 2016, ISSN: 1010-2760, e-ISSN: 2071-0054. was used to model (Fig.1). It was classified as an elastoplastic material, as a Rhodic Ferralsol according to Soil Survey Staff (2014)SOIL SURVEY STAFF: Keys to Soil Taxonomy, Ed. Government Printing Office, USDA Natural Resources Conservation Service ed., Washington, DC, USA, 346 p., 2014, ISBN: 0-16-092321-2.; Oxisol according to Soil Survey Staff (2010)SOIL SURVEY STAFF: Keys to soil taxonomy, Ed. USDA Natural Resources Conservation Service, Washington, DC, USA, 346 p., 2010. and Typical Red Ferralitic according to the third Genetic Classification of Soils in Cuba (Hernández et al., 1999HERNÁNDEZ, J.A.; PÉREZ, J.J.M.; MESA, N.Á.; BOSCH, I.D.; RIVERO, L.; CAMACHO, E.: Nueva versión de la clasificación genética de los suelos de Cuba., Ed. AGRINFOR, Barcaz L L ed., vol. I, La Habana, Cuba, 64 p., 1999, ISBN: 959-246-022-1.). According to their texture, it can be considered a clay very plastic loam, with 17% of sand, 36% silt, 47 clay% and organic matter content 2,58% (Herrera et al., 2008bHERRERA, S.M.; IGLESIAS, C.C.E.; GONZÁLEZ, C.O.; LÓPEZ, B.E.; SÁNCHEZ, I.A.: “Propiedades mecánicas de un Rhodic Ferralsol requeridas para la simulación de la interacción suelo implemento de labranza mediante el Método de Elementos Finitos: Parte I”, Revista Ciencias Técnicas Agropecuarias, 17(3): 31-38, 2008b, ISSN: 1010-2760, e-ISSN: 2071-0054.; 2008aHERRERA, S.M.; IGLESIAS, C.C.E.; GONZÁLEZ, C.O.; LÓPEZ, B.E.: “Propiedades mecánicas de un Rhodic Ferralsol requeridas para la simulación de la interacción suelo implemento de labranza mediante el Método de Elementos Finitos: Parte II Interfase suelo-herramienta”, Revista Ciencias Técnicas Agropecuarias, 17(4): 50-54, 2008a, ISSN: 1010-2760, e-ISSN: 2071-0054.). According to Naderi et al. (2013)NADERI, B.M.; ALIMARDANI, R.; HEMMAT, A.; SHARIFI, A.; KEYHANI, A.; TEKESTE, M.Z.; KELLER, T.: “3D finite element simulation of a single-tip horizontal penetrometer-soil interaction. Part I: Development of the model and evaluation of the model parameters”, Soil and Tillage Research, 134: 153-162, 2013, ISSN: 0167-1987.; Ibrahmi et al. (2017)IBRAHMI, A.; BENTAHER, H.; HAMZA, E.; MAALEJ, A.; MOUAZEN, A.M.: “3D finite element simulation of the effect of mouldboard plough’s design on both the energy consumption and the tillage quality”, The International Journal of Advanced Manufacturing Technology, 90(1): 473-487, 2017, ISSN: 1433-3015.; Arefi et al. (2022)AREFI, M.; KARPARVARFARD, S.H.; AZIMI, N.H.; NADERI, B.M.: “Draught force prediction from soil relative density and relative water content for a non-winged chisel blade using finite element modelling”, Journal of Terramechanics, 100: 73-80, 2022, ISSN: 0022-4898, DOI: https://doi.org/10.1016/j.jterra.2022.01.001., this model is the most appropriate for the soil material simulation, because it can be gauged by obtaining data from triaxial tests. The yield function of the Drucker & Prager (1952)DRUCKER, D.C.; PRAGER, W.: “Soil mechanics and plastic analysis or limit design”, Quarterly of applied mathematics, 10(2): 157-165, 1952, ISSN: 0033-569X. model lineal is expressed as:
Properties and Soil Parameters
⌅The elastic module (E) was determined as the tangent module to the effort-deformation curve of the soil in its right tract, obtained by Herrera et al. (2008bHERRERA, S.M.; IGLESIAS, C.C.E.; GONZÁLEZ, C.O.; LÓPEZ, B.E.; SÁNCHEZ, I.A.: “Propiedades mecánicas de un Rhodic Ferralsol requeridas para la simulación de la interacción suelo implemento de labranza mediante el Método de Elementos Finitos: Parte I”, Revista Ciencias Técnicas Agropecuarias, 17(3): 31-38, 2008b, ISSN: 1010-2760, e-ISSN: 2071-0054.; 2008a)HERRERA, S.M.; IGLESIAS, C.C.E.; GONZÁLEZ, C.O.; LÓPEZ, B.E.: “Propiedades mecánicas de un Rhodic Ferralsol requeridas para la simulación de la interacción suelo implemento de labranza mediante el Método de Elementos Finitos: Parte II Interfase suelo-herramienta”, Revista Ciencias Técnicas Agropecuarias, 17(4): 50-54, 2008a, ISSN: 1010-2760, e-ISSN: 2071-0054. for this type of soil. The Poisson coefficient was determined by means of the equation:
The shear modulus G is determined by:
The properties or parameters required by the MEF model (Table 1) were obtained in the Laboratory of Soil Mechanics of the Company of Applied Investigations to Construction in Villa Clara (CAIC.VC).
Property or parameter | Symbol | Dimension | Source |
---|---|---|---|
Internal friction angle | φ | 27,19 º | Herrera et al. (2015)HERRERA, S.M.; IGLESIAS, C.C.E.; JARRE, C.C.; LEÓN, S.Y.; LÓPEZ, B.E.; GONZÁLEZ, C.O.: “Predicción de la resistencia del suelo durante la labranza mediante los modelos de presiones pasivas”, Revista Ciencias Técnicas Agropecuarias, 24(3): 5-12, 2015, ISSN: 1010-2760, e-ISSN: 2071-0054. |
Elasticity module | E | 104 272 kPa | Herrera et al. (2008)HERRERA, S.M.; IGLESIAS, C.C.E.; GONZÁLEZ, C.O.; LÓPEZ, B.E.: “Propiedades mecánicas de un Rhodic Ferralsol requeridas para la simulación de la interacción suelo implemento de labranza mediante el Método de Elementos Finitos: Parte II Interfase suelo-herramienta”, Revista Ciencias Técnicas Agropecuarias, 17(4): 50-54, 2008a, ISSN: 1010-2760, e-ISSN: 2071-0054. |
Poisson coefficient | υ | 0,44 | Calculated |
Bending stress | σ f | 693,2 kPa | González et al. (2014)GONZÁLEZ, C.O.; HERRERA, S.M.; IGLESIAS, C.C.E.; LÓPEZ, B.E.: “Modelos constitutivos drucker prager extendido y drucker prager modificado para suelos rhodic ferralsol”, Terra Latinoamericana, 32(4): 283-290, 2014, ISSN: 0187-5779. |
Cohesion | d | 217,2 kPa | González et al. (2014)GONZÁLEZ, C.O.; HERRERA, S.M.; IGLESIAS, C.C.E.; LÓPEZ, B.E.: “Modelos constitutivos drucker prager extendido y drucker prager modificado para suelos rhodic ferralsol”, Terra Latinoamericana, 32(4): 283-290, 2014, ISSN: 0187-5779. |
Dilatancy angle | Ψ | 13º | González (2011)GONZÁLEZ, C.O.: Modelación de la compactación provocada por el tráfico de neumáticos, de los vehículos agrícolas, en suelos en condiciones de laboratorio, Universidad Agraria de La Habana. Centro de Mecanización Agropecuaria, Tesis (en opción al grado científico de Doctor en Técnicas Agropecuarias), San José de las Lajas, Mayabeque, Cuba, 100 p., publisher: Universidad Central “Marta Abreu” de Las Villas. Facultad de Ciencias …, 2011. |
Shear Resistance | τ | 40 kPa | Herrera (2006)HERRERA, S.M.: Simulación del comportamiento mecánico de los suelos ferralíticos rojos mediante el método de elementos finitos, Universidad Agraria de La Habana. Centro de Mecanización Agropecuaria, Tesis (en opción al grado científico de Doctor en Técnicas Agropecuarias), San José de las Lajas, La Habana, Cuba, 109 p., publisher: Universidad Central “Marta Abreu” de Las Villas. Facultad de Ciencias …, 2006. |
Shear module | G | 1 793, 4 kPa | Calculated |
Soil type | Lineal elástoplástico | ||
Soil-metal friction angle | δ | 23,68º | Herrera et al. (2015)HERRERA, S.M.; IGLESIAS, C.C.E.; JARRE, C.C.; LEÓN, S.Y.; LÓPEZ, B.E.; GONZÁLEZ, C.O.: “Predicción de la resistencia del suelo durante la labranza mediante los modelos de presiones pasivas”, Revista Ciencias Técnicas Agropecuarias, 24(3): 5-12, 2015, ISSN: 1010-2760, e-ISSN: 2071-0054. |
Humidity | H | 23,9 % | Herrera et al. (2008)HERRERA, S.M.; IGLESIAS, C.C.E.; GONZÁLEZ, C.O.; LÓPEZ, B.E.: “Propiedades mecánicas de un Rhodic Ferralsol requeridas para la simulación de la interacción suelo implemento de labranza mediante el Método de Elementos Finitos: Parte II Interfase suelo-herramienta”, Revista Ciencias Técnicas Agropecuarias, 17(4): 50-54, 2008a, ISSN: 1010-2760, e-ISSN: 2071-0054. |
Density | ρ | 1 200 kg.m-3 | Calculated |
Finite Element Model
⌅It is formed by the farming tool (arm scarifier) which is treated as rigid body and the soil block (deformable in interaction with the arm scarifier). Both, the arm and the soil block were modeled using the design software Solid Works and its complement Simulation. The soil block dimensions were longitude (2 m), wide (1 m) and height (1 m). The soil block was considered isotropic and homogeneous, with movement restrictions for side, bottom and upper surfaces (Fig. 2a), to which confining pressures were applied. On the soil model, the gravity force and the atmospheric pressure act. It is accepted that the increase of the dimensions of the prism of cut soil beyond those assigned does not affect the cutting forces (Bentaher et al., 2013BENTAHER, H.; IBRAHMI, A.; HAMZA, E.; HBAIEB, M.; KANTCHEV, G.; MAALEJ, A.; ARNOLD, W.: “Finite element simulation of moldboard-soil interaction”, Soil and Tillage Research, 134: 11-16, 2013, ISSN: 0167-1987.; Marín & García de la Figal, 2019MARÍN, C.L.O.; GARCÍA DE LA FIGAL, C.A.E.: “Model of Soil-TillageTool Interaction Using Finite Element Method”, Revista Ciencias Técnicas Agropecuarias, 28(4): 40-50, 2019, ISSN: 1010-2760, e-ISSN: 2071-0054.). The interaction soil-tool was modeled tangent to the attack surface of the tool, with contact model surface to surface. The general meshing of the model was carried out with a size of elements (e) maximum of 0,008 m, minimum size of 0,006 m and the Newton-Raphson iterative method was used. The surfaces in contact, both, of the tool and of the soil prism cut were modeled applying meshing control with size of elements of 0,004 m (Fig. 2b). The arm cuts the soil block to constant speed of 0, 65 ms-1 in the direction of the X axis, to a working depth of 0, 3 m and cutting wide 0,081 m. The soil cut slips above the surface of the tool after the fault.
RESULTS AND DISCUSSION
⌅3D models have been developed using the MEF for the realization of both, dynamic analysis (Abo et al., 2003ABO, E.M.; HAMILTON, R.; BOYLE, J.T.: “3D Dynamic analysis of soil-tool interaction using the finite element method”, Journal of Terramechanics, 40(1): 51-62, 2003, ISSN: 0022-4898.; Mollazade et al., 2010MOLLAZADE, K.; JAFARI, A.; EBRAHIMI, E.: “Application of dynamical analysis to choose best subsoiler’s shape using ANSYS”, New York Science Journal, 3(3): 93-100, 2010.) and narrow farming tool behavior (Payne, 1956PAYNE, P.: “The relationship between the mechanical properties of soil and the performance of simple cultivation implements”, Journal of Agricultural Engineering Research, 1(1): 23-50, 1956.). Most of them have been used for slow tools and have not had into account the speed effects. For the analysis of the influence of the tool forward speed (Vm) on the soil cutting forces, the results were evaluated for four different speeds: 0 ms-1; 0,4 ms-1; 0,8 ms-1 and 1,2 ms-1 (Fig 3). Several runs of the simulation model were carried out, with the parameters in Table 1 and those that appear related in Table 2.
Name | Category | Value | Unit | Comment |
---|---|---|---|---|
Density | Simulation ▼ | 1.2 ∑ | g/cm3 ▼ | |
Humidity | Simulation ▼ | 23.9 ∑ | N/A ▼ | |
Frequency | Simulation ▼ | 14 ∑ | rad/d ▼ | |
Width, | Simulation ▼ | 11 ∑ | N/A ▼ | |
Speed | Simulation ▼ | ∑ | N/A ▼ | |
Bench mark of the model▼ | 0 | N/A ▼ |
The analysis carried out showed the increase in a quadratic way, of both, the draft force (Fx) and the vertical force (Fy) with the increase of the forward speed (Fig. 4), which coincides with several authors as Onwualu & Watts (1998)ONWUALU, A.P.; WATTS, K.C.: “Draught and vertical forces obtained from dynamic soil cutting by plane tillage tools”, Soil and Tillage Research, 48(4): 239-253, 1998, ISSN: 0167-1987. and Wang et al. (2019)WANG, Y.; OSMAN, A.N.; ZHANG, D.; YANG, L.; CUI, T.; ZHONG, X.: “Optimized design and field experiment of a staggered vibrating subsoiler for conservation tillage”, International Journal of Agricultural and Biological Engineering, 12(1): 59-65, 2019, ISSN: 1934-6352.
CONCLUSSIONS
⌅The cutting forces of soil, both, vertical and draft forces increase in a quadratic way with the increase of the forward speed, being the last one, the force with more magnitude.
The FEM has been able to simulate, in an appropriate way, the effects of the forward speed of the farming tool on the soil cutting forces.