The automated measurement of proximity/distance is indispensable to face the growing complexity of a great number of productive systems. In this way, the sensors based on ultrasonic acoustic echolocation stand out. A diverse set of authors like Siemens (2008)SIEMENS: Detectores de proximidad ultrasónicos ”, en Sensores para la automatización de la producción, Siemens AG, Catálogo FS 10, Nürnberg, Germany, 2/3-2/69 p., 2008., Gómez & López (2009)GÓMEZ, J.; LÓPEZ, A.: Aplicaciones del ultrasonido en el tratamiento de alimentos, [en línea], no. Temas Selectos de Ingeniería de Alimentos, Departamento de Ingeniería Química y Alimentos, Universidad de las Américas, Puebla, México, 2009, Disponible en:www.udlap.mx/WP/tsia/files/No3-Vol-1/TSIA-3(1)-Gomez-Diaz-et-al-2009.pdf , [Consulta: 13 de marzo de 2017]., Montoya (2013)MONTOYA, G.J.: Análisis del IRI para un proyecto de carretera sinuosa concesionada en el Perú, Universidad de Piura, Tesis (en opción al título de Máster en Ingeniería Civil con mención en Ingeniería Vial), Lima, Perú, 82 p., 2013., Domínguez (2014)DOMÍNGUEZ, C.: Evaluación superficial de los pavimentos (IRI, PR, MAC, DET) mediante el uso de equipos de alto rendimiento en diversos tramos de la Red Carretera Federal (Autopistas de Cuota, Corredores y Red Básica Libre), Dirección General de Servicios Técnicos de la Secretaría de Comunicaciones y Transportes, informe técnico, México D. F, 14 p., 2014., Moreno (2016)MORENO, L.J.: Influencia de la velocidad en la medición de IRI con equipo perfilómetro láser, Universidad Militar de Nueva Granada, Trabajo de Grado (en opción al título de Especialista en Ingeniería de Pavimento), Bogotá, Colombia, 14 p., 2016. and Bermudez (2017)BERMUDEZ, A.D.; (first): Ultrasound: Advances in food processing and preservation, Ed. Elsevier Inc., Oxford, U K, 2017, ISBN: 978-0-12-804581-7., mention that these systems have potential applications in food storage, control of fuel consumption, measurement of structural parameters in roadways networks and determination of water volume stored in tanks, dams and wells. Similarly, they are applied in specialized instruments, robotics, automation of agricultural and agroindustrial processes and many others.
These systems are viable due to some advantages in comparison with other methods of automated measurement of proximity/distance (Siemens 2008SIEMENS: Detectores de proximidad ultrasónicos ”, en Sensores para la automatización de la producción, Siemens AG, Catálogo FS 10, Nürnberg, Germany, 2/3-2/69 p., 2008.; Cuamatzi et al., 2010CUAMATZI, X.; JIMÉNEZ, M.A.; NAVARRETE, F.J.: Sistema de proximidad ultrasónico, [en línea], Instituto Politécnico Nacional “Adolfo López Mateo”, Tesis (en opción al título de Ingeniero en Comunicaciones y Electrónica), México D. F., 2010, Disponible en:www.sepi.esimez.ipn.mx/msistemas/tesis.html. and Kentish, 2017KENTISH, S.E.: Engineering principles of ultrasound technology, Ed. Elsevier Inc., D. Bermudez-Aguirre. Ultrasound: Advances in food processing and preservation ed., Oxford, U K, 1-14 p., 2017, ISBN: 978-0-12-804581-7.). Among them, high immunity to the mechanical vibrations, high immunity to adverse work conditions (environmental noise, dust, gases, others), measurement range from tenths of centimeters until meters and comparatively low cost, are relevant.
Likewise, the mathematical modeling of measurement systems has a very important role in the characterization, design and simulation of systems of automatic control of processes (Placko, 2006PLACKO, D.: Metrology in Industry: The Key of Quality, Ed. French College of Metrology, Newport, Gales, UK, 2006, ISBN: 978-1-905209-51-4. and Stephan, 2011STEPHAN, E.P.: Wriggers: Modelling, Simulation and Software Consepts for Scientific-Technological Problems, Ed. Springer-Verlag, Berlin, Germany, 2011, ISBN: 978-3-642-20489-0.). For that reason this paper is about the mathematical modeling and the analytic characterization of a proximity sensor prototype based on ultrasonic acoustic echolocation with thermal compensation (see Figure 1), whose fundamentals and design have been treated in precedent works (León et al., 2018LEÓN, M.J.A.; HERNÁNDEZ, G.A.; IGLESIAS, C.C.: “Fundamentals, Design and Evaluation of an Ultrasonic Proximity Sensor with Thermal Compensation”, Revista Ciencias Técnicas Agropecuarias, 27(2): 33-40, 2018, ISSN: 1010-2760, e-ISSN: 2071-0054., 2019LEÓN, M.J.A.; HERNÁNDEZ, G.A.; IGLESIAS, C.C.: “Diseño de un Dispositivo de Interfaz para un Sensor Ultrasónico de Proximidad”, En: XIII Conferencia Científica de Ingeniería Agrícola AGRING, Ed. Universidad Agraria de La Habana, Centro de Mecanización Agropecuaria (CEMA), San José de Las Lajas, Mayabeque, Cuba, 2019, ISBN: 978-959-16-3777-2.).
In this paper, the analytic characterization of the propagation medium behavior under the acoustic disturbance produced by the sensor is presented. The influence of the catoptrics conditions of the separation limit in echo intensity is also shown. Likewise, the sensor response to the echo is analytically characterized, considering the worst catoptrics conditions studied.
The active element of the 10CK40T transducer used in the sensor, is a quartz piezoelectric ultrasonic buzzer. This acts as a peculiar type of filter on the pulses signal generated by the excitation subsystem of the sensor (León et al., 2018LEÓN, M.J.A.; HERNÁNDEZ, G.A.; IGLESIAS, C.C.: “Fundamentals, Design and Evaluation of an Ultrasonic Proximity Sensor with Thermal Compensation”, Revista Ciencias Técnicas Agropecuarias, 27(2): 33-40, 2018, ISSN: 1010-2760, e-ISSN: 2071-0054.). For that reason, the real excitation signal does not have a square shape (see blue curve in Figure 2). Therefore, in order to facilitate the characterization of its behavior, it would be convenient to fit it to an analytic correlation function, from recording the real excitation signal (Zilesny, 2011ZILESNY, A.: From Curve Fitting to Machine Learning, Ed. Springer-Verlag, Berlin, Germany, 2011, ISBN: 978-3-642-21279-6.). Then, it is convenient to use the following function:
being:
Amplitude of the main harmonic component of function,
Non-dimensional relationship among the amplitudes of the main and secondary harmonic components respectively
Phase of function,
Nominal frequency of the transducer,
Time,
The parameters , and are the correlation coefficients for the fitting of the function (1) to the real signal generated by the sensor for the transducer excitation.
The wave function that corresponds to a spherical wave front Crawford (1968)CRAWFORD, F.S.: “Traveling Waves ”, en Waves. Berkeley Physics Course, Ed. McGraw-Hill Book Company, vol. 3, New York, USA, 156-199 p., 1968b.; Young & Freedman (2009)YOUNG, H.D.; FREEDMAN, R.A.: Física universitaria, Ed. Pearson Educación, vol. I, México D. F, 487-569 p., 2009, ISBN: 978-607-442-288-7.; Ginsberg (2018)GINSBERG, J.H.: “Descriptions of sound ”, en Acoustics. A textbook for engineers and physicists, Ed. Springer International Publishing, vol. I: Fundamentals, Dunwoody, 1-90 p., 2018, ISBN: 978-3-319-56844-7., generated according to the signal described by the equation (1), is determined for:
where:
Wave propagation distance in the instant of time , ;
Radio of the transducer emission surface, .
The wave number of the main harmonic component in the wave function (2), is determined according to:
being:
Sound speed in the air, .
Thus, the oscillations amplitude on the emission surface of the transducer will be:
where:
Density of the air, .
Considering the sensor design conditions, the wave intensity on the emission surface of the transducer can be determined according to:
being:
Reference sound intensity, .
Maximum sound pressure level of the transducer, ;
Maximum input voltage (peak to peak) of the transducer, .
The elastic waves behavior in the separation limit between different densities propagation media, is characterized by the separation in two new wave fronts (Yavorski & Pinski, 1983YAVORSKI, B.M.; PINSKI, A.A.: Ondas Elásticas ” en Fundamentos de Física, Editorial MIR, vol. II, Moscú, Rusia, URSS, 68-84 p., 1983.; Young & Freedman, 2009YOUNG, H.D.; FREEDMAN, R.A.: Física universitaria, Ed. Pearson Educación, vol. I, México D. F, 487-569 p., 2009, ISBN: 978-607-442-288-7.). They are known as reflected (echo) and refracted wave fronts, respectively.
The catoptrics properties characterize the wave reflection capacity in the limit of separation between two propagation media. Reflectivity coefficient has been defined as the relation between the intensities of the reflected and incident waves, quantifying, in this way, the separation limit catoptrics properties (Crawford, 1968aCRAWFORD, F.S.: Reflection en Waves. Berkeley Physics Course, Ed. McGraw-Hill Book Company, vol. 3, New York, USA, 226-240 p., 1968a.; Yavorski & Pinski, 1983YAVORSKI, B.M.; PINSKI, A.A.: Ondas Elásticas ” en Fundamentos de Física, Editorial MIR, vol. II, Moscú, Rusia, URSS, 68-84 p., 1983.). In the particular case of a sonic wave traveling by the air, the acoustic reflectivity coefficient for the associate separation limit between the air and another material, is calculated according to:
where:
Numeric identification associated to the corresponding material (see Table 1);
Density of the corresponding material,
Sound speed in the corresponding material,
The selection of the different materials for the catoptric behavior characterization, must consider that a high variability exists among the parameters associated to them. Table 1 shows the relation of the materials and their parameters for equation (6). They have been taken from Young & Freedman (2009)YOUNG, H.D.; FREEDMAN, R.A.: Física universitaria, Ed. Pearson Educación, vol. I, México D. F, 487-569 p., 2009, ISBN: 978-607-442-288-7..
In equation (6) it is considered that the energy of the incident wave is completely transferred to the echo and the refraction wave. For that reason, while bigger is the difference between the respective densities of the material and the air, the echo intensity will also be bigger (Crawford, 1968aCRAWFORD, F.S.: Reflection en Waves. Berkeley Physics Course, Ed. McGraw-Hill Book Company, vol. 3, New York, USA, 226-240 p., 1968a.; Yavorski and Pinski, 1983YAVORSKI, B.M.; PINSKI, A.A.: Ondas Elásticas ” en Fundamentos de Física, Editorial MIR, vol. II, Moscú, Rusia, URSS, 68-84 p., 1983.; Savéliev, 1984SAVÉLIEV, I.V.: Ondas Elásticas ”, en Curso de Física General, Editorial MIR, vol. II, Moscú, Rusia, URSS, 289-316 p., 1984.). Then, the echo intensity in the isotropic source emission focus can be determined according to:
being:
Radio of the reflection surface, .
As a result of the transducer excitation, the real shape of the excitation signal is obtained and recorded (see blue curve in Figure 2).
Based on the data set coming from the real signal registration, a fitted mathematical model is obtained (see red curve in Figure 2).
The fitted mathematical model of the excitation signal describe it with an adjusted equal to . This model is described analytically by the following function:
According to expression (8) (see the red curve in Figure 2 and the first graph in Figure 3), it is possible to model the behavior of the oscillations in the propagation medium, as well as with the advance of the wave front. So the corresponding wave function is:
In the second graph, in Figure 3, the behavior of the oscillations in the near proximity of the transducer emission surface is presented. Likewise, in the third graph, in Figure 3, the curve that describes the decrease of the oscillations amplitude, with the advance of the wave front is presented.
In general, in the graphs of Figure 3, a mathematical model running of the acoustic excitation taken place on the propagation medium by the sensor action is presented. In them, the behavior of the wave front is described during the time ( ) that has been programmed for the duration of the medium acoustical disturbance (León et al., 2019LEÓN, M.J.A.; HERNÁNDEZ, G.A.; IGLESIAS, C.C.: “Diseño de un Dispositivo de Interfaz para un Sensor Ultrasónico de Proximidad”, En: XIII Conferencia Científica de Ingeniería Agrícola AGRING, Ed. Universidad Agraria de La Habana, Centro de Mecanización Agropecuaria (CEMA), San José de Las Lajas, Mayabeque, Cuba, 2019, ISBN: 978-959-16-3777-2.).
In Table 1, the set of acoustic reflectivity coefficients of the selected materials related to the air ( , ) is presented Then, no matter the deliberate high variability of the sets of densities and sound speeds, in the set of the acoustic reflectivity coefficients, it presented a very small variation (variation coefficient equal to ).
Note: The variation coefficient of the densities and the sound speeds shown, do not contemplate the air density and the sound speed in the air.
The obvious interpretation of this result is that they will not have significant differences in the behavior of the echo intensity resultant of the collision of a sound wave (through the air) with one of these materials. In fact, in the worst of the studied cases (water surface at and ), the echo will transport the of the incident wave energy, in the zone of the near proximity of the separation limit between air and water.
As it has been mentioned previously, the 10CK40T transducer is able to produce a sound pressure level of for a maximum amplitude of a continuous excitation signal of (peak to peak) and a frequency of . Nevertheless, the design parameters of the sensor impose an excitation signal for the transducer of (peak to peak), as the one shown in the blue curve of Figure 2. So, this implies that the initial sound intensity of the sensor will be , then it means a sound pressure level in the order of .
Considering the elements presented previously, it is possible to describe the behavior of the echo intensity with the increase of the distance between the sensor and the separation limit, for the worst of the studied cases (water surface at and , with of radio). The curves of Figure 4 show this relationship, obtained from equation (7).
Thus, it can be predicted that at a distance of two meters between the sensor and the separation limit, the echo intensity will be (echo sound pressure level in the order of ). This guarantees a good sensor performance for a detection zone defined between and , considering that the sensibility of the 10CK40R transducer is ( ).
The behavior of the propagation medium response under the acoustic excitation produced by the sensor action was analytically characterized, based on a correlation function fitted to the real excitation signal generated by it, with an adjusted equal to ;
It was determined that the catoptrics conditions of the separation limit between air and a set of materials that differ significantly in their physical properties, do not have significant influence in the resultant echo intensity, because the variation coefficient of the acoustic reflectivity coefficients set obtained is equal to ;
The analytic characterization of sensor response to the echo (considering the worst catoptrics conditions) indicates that the sensor must have a good performance for a detection zone defined between and , considering that the minimum sound pressure level of the echo is in the order of .