REVIEW

  

http://opn.to/a/AaxSc

Constitutive Models Used in Modeling Mechanical Response of Agricultural Soils


ABSTRACT

Given the importance of knowing the mechanical response of the soil as one of the variables to be taken into account in the design of implements and machines capable of preserving the physical qualities of the soil, several constitutive models have been developed that represent the soil as a non-linear material elastic or elastoplastic. The objective of this paper was to analyze the current state of the constitutive models used in the modeling of agricultural soils in order to define which of them is the most adequate to simulate the mechanical response of agricultural soils with clay texture (Oxisol, Inceptisol and Vertisol). Constitutive models that are used in the simulation of the mechanical response of agricultural soils by means of the finite element method are analyzed critically, taking into account the properties and parameters of input, determination of these and their implementation in the softwares for simulation using the finite element method. Finally, it is concluded that the Drucker Prager Extended model as the most adequate to simulate the mechanical response of an Oxisol, prioritizing in this decision its simplicity, convenience when determining its parameters, accuracy in estimating the stress-strain relationship of the soil , and inclusion in most commercial software.

Keywords: 

simulation; mechanical answer; finite elements.

 


INTRODUCTION

Several constitutive models for the simulation of the mechanical response of the soil using the finite elements method have been developed, since the material behavior of the soil is quite difficult to describe, due to the great variety of existing soils and to their non-linear response when subjected to stress, in both the loading and the discharge process (Wulfsohn & Adams, 2002).

Shen and Kushawaha (1998), classified the constitutive models used to describe the stress-strain relation of the soil as linear and non-linear models (taking into account the shape of the stress-strain curve), elastic, plastic and elastoplastic models (depending on the plasticity of the material), static and dynamic models (depending on the inclusion, or not, of time).

Within these, linear models find their greatest application in stress analysis in structural elements, being the nonlinear models the ones of greatest use in studies related to agricultural soil mechanics. Considering the elements that define the elasticity and plasticity of soils, the elastoplastic models are the most used ones in simulating their mechanical response when being interacted by the working organs of farming tools, because, they assume that the soil can undergo plastic, elastic or elastoplastic strain depending on the magnitude of the applied loads (Shen y Kushawaha, 1998).

At international level, several constitutive models that show the soil as a non-linear elastic or elastoplastic material have been developed. The ones that have reached greatest use are the elastoplastic models of Morh-Coulomb (1776), mentioned by Drucker and Prager (1952) in their extended and modified versions. Besides, Cam Clay or Cambridge developed by Roscoe et al. (1958) and later modified by Roscoe & Burland (1968); the elastic nonlinear model initially developed by Kondner & Zelasko (1963) and modified by Duncan & Chan (1970); the elastoplastic of Lade (1977), and the plastic model of Bailey et al. (1984).

Therefore, the present paper aimed to analyze the current state of the constitutive models used in modeling the mechanical response of agricultural soils in order to define which of them is the most suitable to simulate the mechanical response of agricultural soils with clay texture (Oxisol, Inceptisol and Vertisol). All that with the premise of the predictions accuracy, their advantages and disadvantages as well as their inclusion or not in professional programs for this purpose.

CONSTITUTIVE MODELS

Mohr-Coulomb Model. It is based on the linear failure criterion of Mohr-Coulomb, which is widely used in investigations of both clay and sandy soils, as well as in rock and concrete studies as a result of its simplicity and comfort (Hong-Cai et al., 2012; Herrera et al., 2013; Consoli et al., 2014; Camacho & Ramos, 2016; Molnar, 2016; Chang & Konietzky, 2018; Sekhavatian & Janalizadeh, 2018), however, it has not been widely used for simulation of the soil-tillage interaction (Bhaveshkumar & Prajapati, 2011). This breaking criterion is generally defined in function of the tangential and the normal tensions in a plane, but it can be transformed in such a way that the tension can be represented in three dimensions (Figure 1). Although represented in this form, it presents corners in its hexagonal section which is a deficiency (Abbo et al., 2011; Labuz y Zang, 2012).

2071-0054-rcta-28-03-e10-gf1.jpg

FIGURE 1. 

Mohr-Coulomb model. a) Mohr-Coulomb failure surface in the main tension space (Nieto et al., 2009);b) Mohr-Coulomb creep surface in the plane of deflection stresses (Hibbit, 2008a).

This model considers that the flow potential of the soil is linear and continuous in the southern plane of the stresses (q-p), ensuring that the flow direction is only defined in this plane. Hence, in this case, the soil flows in an associated way (Figure 2), it also includes that once the soil begins to flow plastically, can be deformed by hardening or softening.

2071-0054-rcta-28-03-e10-gf2.jpg

FIGURE 2. 

Mohr-Coulomb hyperbolic flow potential family in the southern plane (Hibbit, 2008b).

It is implemented in most commercial software available for simulation using the finite element method, requiring six parameters as input data, which can be determined by means of conventional tests (direct shear and triaxial compression), performed in soil mechanics laboratories. It has been widely used in studies related to the determination of the mechanical response of both sandy and clayey soils (Rashidi y Gholami, 2011; Herrera et al., 2013).

According to Bishop (1966), it adjusts better the experimental data than the criterion of Drucker & Prager (1952); however, Herrera et al. (2008), obtained evidence that the Mohr-Coulomb model is not able to predict with the required accuracy the tension state of the soil and its strains, especially when the soil is deformed by softening. They also found that, in this model, both dilatancy and hardening played a secondary role in the predictions. For the humidity conditions (40% humidity) good results were obtained in the predictions where the soil showed a plastic failure, as long as it was considered in the model that the soil could not be deformed by hardening. Taking into account these results, the aforementioned authors do not consider this model is suitable for the simulation of the mechanical response of oxisols.

Drucker-Prager Model. It was developed to represent the plastic deformation of soils (Drucker and Prager, 1952). It is ruled by a creep criterion depending on the applied pressure that determines if the material has exceeded the elastic limit or not. It is a tighter version of the Mohr-Coulomb model, so it can be expressed in function of the cohesion and the internal friction angle. The original model and its variants have recently been applied to studies of soils, rocks, concrete, foams, polymers and other materials (Ucgul et al., 2014; Hamlaoui et al., 2015; Shin et al., 2015; Hammi et al., 2017), finding great application in researches related to the simulation of soil mechanical response, pneumatic-soil interaction, soil compaction, and soil-farming tool interaction (Herrera, 2006; Herrera et al., 2008; Biris et al., 2009; González, 2011; González et al., 2012; Nankali et al., 2012; González et al., 2013a; González et al., 2013b; Nasiri et al., 2013; Armin et al., 2014; Gonzalez et al., 2014; Moslem & Hossein, 2014; Ibrahmi et al., 2015; Chiorescu et al., 2017).

When it is represented in three dimensions, a conical surface is used (Figure 3), which makes it more suitable from the mathematical point of view, since it solves the problem of the corners of the hexagonal section that appear in the pyramid of the Mohr-Coulomb model (Shen & Kushawaha, 1998).

2071-0054-rcta-28-03-e10-gf3.jpg

FIGURE 3. 

Drucker-Prager model a) Drucker Prager Extended creep surface in the space of the main tensions with conical section (Mouazen & Neményi, 1999b). b) Drucker Prager Extended creep surface on the plane of the diverting stresses (Hibbit, 2008a).

The model includes the possibility of considering the soil as a dilatant material that flows in the normal direction to the creep surface, taking the dilatation angle the same value as the creep surface angle Ψ=β. This same criterion was successfully used by Mouazen & Neményi (1999b), Mouazen & Neményi (1999a) and Mouazen et al. (1999) during the simulation of the cutting of a sandy loamy soil by a farming tool. Although researchers like Grujicic et al. (2009), reported that when the flow criterion is applied in this model, excessive dilatation is obtained, which affects the accuracy of the predictions, and constitutes a limiting factor of the model.

The model also gives the possibility to consider the soil as a non-dilatant material from the implementation of a non-associated flow rule, where the soil does not flow in the normal direction to the creep surface, where Ψ<β. It was used by Herrera (2006); Herrera et al. (2008) and González (2011), with this configuration, in the simulation of the mechanical response (soil- farming tool interaction and soil compaction) of an Oxisol, obtaining that the most accurate predictions took place when considering the non-associated flow rule Ψ<β (Herrera, 2006; Herrera et al., 2008), not so in the investigations developed by González (2011).

This model was later used by de la Rosa et al. (2013), with the objective of evaluating its validity in the simulation of the mechanical response of a Vertisol from the central region of Cuba, taking into account the possibilities of the model to predict the changes of tensions as product of the strains by softening or hardening with great accuracy. In addition, it requires a few parameters as input data, which can be obtained in soil mechanics laboratories by means of conventional tests (flat cutting and triaxial compression) and it is included in most professional programs for simulation using the finite elements method.

The results of the investigation showed that the accuracy of the Drucker Prager Extended model in the prediction of the mechanical response of Vertisol, depends on the soil humidity and density status, as well as on the configuration of the model, oscillating the absolute average error from 8.58. % to 27.93%. The greatest accuracy in the prediction of the stress-strain relation was reached when the soil was considered as a dilatant material (Ψ=β) and the coefficient relating the deviating stresses (K) was in function of the humidity content and densification state of soil (K=0.8, K=calculated and K=1). When considering the soil as a non-dilatant material (Ψ=0) and independently of the value it takes (K), numerical impressions that made the convergence of the solutions impossible were presented, once the deviating efforts went over the value of the creep tension. This result allows affirming that this model presents difficulties to predict the mechanical response of the soil once the deviating stress go over the value of the creep tension. Therefore, the parameters that cause the inaccuracies are related to the plastic deformation phase and not to the elastic phase, since in the last one the errors in the prediction are minor.

Cam Clay Model. According to Munda et al. (2014), it is one of the most used models to represent the mechanical response of normally consolidated clays. It was developed by Roscoe et al. (1958), for normally or slightly consolidated clays (Figure 4), later modified by Roscoe & Burland (1968), to explain the plastic and volumetric strain of the soil before and after its failure, using a creep surface of the capsule type (Herrera, 2006). This model has had great application in studies related to the mechanical resistance of soils in general (Mendoza et al., 2014). In the case of agricultural soils, it has been mainly used in studies related to soil compaction (Tekeste et al., 2013), although they have also found applications in the simulation of soil-farming tool interaction (Plouffe et al., 1999) and tire-soil interaction (Poodt et al., 2003). Its accuracy to predict changes in soil volume, adapting to both cohesive and sandy soils, as well as accurately predicting the stress-strain relation constitute its main virtues.

2071-0054-rcta-28-03-e10-gf4.jpg

FIGURE 4. 

Creep surface and hardening work. a) Cam Clay model; CAP model. b) CAP model (Chi, 1993).

However, there are disadvantages like a high demand of computational resources (González et al., 2013a), in addition to requiring between 11 and 14 input parameters, depending on the way the model is implemented, which require specialized equipment for their determination. On the other hand, Mendoza et al. (2014), reported that this model is not capable of representing all the characteristics for clay-textured soils.

Hyperbolic Model of Duncan and Chan. It is a non-linear elastic model that assumes that the stress-strain curves can be approximated to a hyperbola. It was initially proposed by Kondner & Zelasko (1963) and later it was presented incrementally by Duncan & Chan (1970), based on the use of a constant Poisson coefficient, which implied a linear relation between the axial tension and the volumetric strain, representing a limitation of the model. Duncan (1980), later suggested a new equation for the volumetric module, although it still remained a limitation of the model. It has been successfully used in sandy, clayey and silty soils, showing a great capacity to accurately predict the stress-strain relation of the soil when it presents a plastic failure (Chi & Kushawaha, 1988; Chi, 1990; Chi & Kushawaha, 1991; Herrera et al., 2010), as well as in the correlational analysis between the spatial characteristics of the roots and the elastic-plastic properties of the soil (Li et al., 2017). However, its main limitation consists on the inability to predict the changes of tension as product of the strain by softening or hardening. Chi and Kushawaha (1988), refer as a deficiency of this model, the monotonous nature of the function once the tensions increase with the strain increase. Herrera et al. (2010), found this same deficiency observed by Chi and Kushawaha (1988), in three Cuban clay soils (Oxisol, Inceptisol, Vertisol). Another limitation is that it is not implemented in most of the commercial software used for computational simulation using the finite element method.

Despite these limitations, this model was greatly used in the simulation of the soil-farming tool interaction at the end of the last century as referred by Young & Hanna (1977); Bailey et al. (1984); Chi & Kushawaha (1989); Chi (1990); Chi & Kushawaha (1991); Kushawaha & Shen (1995) and Rosa & Wulfsohn (1999), since it meets the requirements for the selection of the constitutive models proposed by Chi (1993), that is, simplicity; possibility of determining the parameters and convenience of implementation.

Elasto-Plastic Model of Lade. It is based on a special creep criterion for low cohesive soils (Lade, 1977). Within this model, two theories of hardening work are used, the first one for the CAP type creep surface (Figure 5), and the other one for a conical creep surface (Lade, 1977; Lade and Boonyachut, 1982). This model is mainly applied to cohesive granular materials (Zhang et al., 1986; Fonseca et al., 1998).

2071-0054-rcta-28-03-e10-gf5.jpg

FIGURE 5. 

Conical creep surface of the Lade elastoplastic model (Shen and Kushawaha, 1998).

In this theory, the total increase in tension is divided into the following components:

  • The component of elastic incremental strains, which are calculated by means of Hooke's generalized Law (Timoshenko and Goodier, 1970).

  • The component of incremental strains caused by plastic deformation. This deformation is not recoverable during discharge. The plastic collapse, according to the theory of plasticity, is governed by the function of the creep surface (Lade, 1977).

  • The incremental component of plastic expansive strains. They are unrecoverable because of the deviating stress action. The expansive behavior is governed by the creep surface of Lade (1977).

This model was later improved by Lade & Nelson (1984), they developed a procedure to establish an incremental matrix with intersection of multiple creep surfaces, making possible to consider the soil as a dilatant or non-dilatant material, from the implementation of a flow rule associated or not with respect to each creep surface. The possibility of predicting tension changes due to strain, softening or hardening was included. However, the research conducted by Chi et al. (1993), corroborates that the Lade equation does not accurately predict the mechanical response of cohesive soils, especially when the volumetric strains are higher than 10%.

Another disadvantage is that it is not implemented in the main commercially available software for simulation using the finite element method, in addition to needing more parameters as input data than other models (14 in total), which must be obtained with conventional tests in the laboratories of soil mechanics, but needing specialized instrumentation.

Bailey Model. It has been used in studies related to the compaction of agricultural soils, in which its great accuracy in predicting volumetric strain under hydrostatic compression has been shown (Bailey et al., 1984; Chi, 1993). It expresses the soil compaction by means of an exponential model that was modified by Bailey & Johnson (1989), to include the failure or rupture tension. Johnson & Bailey (1990), later proposed a new equation to include in the volumetric strains those strains caused by constant stress.

The disadvantages of this model are that it is not implemented in most of the commercially available software for the simulation by means of the finite element method, although it only needs six input parameters for the implementation of the models. They cannot be determined through conventional tests in soil mechanics laboratories, because they need specialized instrumentation.

CONCLUSIONS

  • Analyzing the models described above, the ones with greater use in the simulation of the mechanical response of agricultural soils are Drucker Prager Extended Model, Cam Clay Model and Duncan Chan Model. However, Cam Clay Model needs a high demand of computational resources and requires between 11 and 14 input parameters according to the way it is implemented, which determination demands specialized equipment. Duncan Chan Model is not implemented in the majority of commercially available software using the finite element method.

  • Finally, it is concluded that the Drucker Prager Extended Model is the most suitable one to simulate the mechanical response of an Oxisol, considering in the first place its simplicity, convenience at the time of determining its parameters, its accuracy in estimating the stress-strain relation of soil, and its inclusion in most commercial software.

 

REFERENCES

ABBO, A. J.; A. V. LYAMIN; S. W. SLOAN y A. HAMBLETON: "A C2 continuos approximation to the Mohr-Coulomb yield surface", International Journal of Solids and Structures, 48: 3001-3009, 2011, ISSN: 0020-7683.

ARMIN, A.; R. FOTOUHI y W. SZYSZKOWSKI: "On the FE modeling of soil-blade interaction in tillage operations", Finite Elements in Analysis and Design, 92(0): 1-11, 2014, ISSN: 0168-874X

BAILEY, A. C. y C. E. JOHNSON: "A soil compaction model for cylindrical stress states.", Transaction of ASAE, 32(3): 822-825, 1989, ISSN: 2151-0032, e-ISSN: 2151-0040.

BAILEY, A. C.; C. E. JOHNSON y R. L. SCHAFER: "Hydrostatic compaction of agricultural soils", TRANSACTIONS of the ASAE, 27(4): 952-955, 1984, ISSN: 2151-0032, e-ISSN: 2151-0040.

BHAVESHKUMAR, P. P. y J. M. PRAJAPATI: "Soil-tool interaction as a review for digging operation of mini hydraulic excavator", International Journal of Environmental Science and Technology, 3(2): 894-901, 2011, ISSN: 1735-1472.

BIRIS, S. S.; V. VLADUT; N. UNGUREANU; G. PARASCHIV y G. VOICU: "Development and experimental testing of a FEM model for the stress distribution analysis in agricultural soil due to artificial compaction", Agriculturae Conspectus Scientificus, 74(1): 21-29, 2009.

BISHOP, A. W.: "The strength of soils as engineering materials", Geotechnique, 16(2): 91-130, 1966, ISSN: 0016-8505.

CAMACHO, O. S. y C. A. M. RAMOS: "Failure potential index for slopes conditioned by landforms", Boletín de Ciencias de la Tierra, (40): 39-45, 2016.

CONSOLI, N. C.; D. SILVA; B. S. CONSOLI y L. FESTUGATO: "Mohr-Coulomb failure envelopes of limed treated soils.", Geotechnique , 64(2): 165-170, 2014.

COULOMB, C. A.: "Essai ser une application des regles des maximes et minimis a quelquels problemes destatique relatifs, a la architecture", Mem. Acad. Roy. Div., 7(1): 343-387, 1776.

CHANG, L. y H. KONIETZKY: "Application of the Mohr-Coulomb Yield Criterion for Rocks with Multiple Joint Sets Using Fast Lagrangian Analysis of Continua 2D (FLAC2D) Software", Energies, 11(3): 614, 2018, ISSN: 1996-1073.

CHI, L.: "Finite element analysis of soil forces on two tillage tools", Canadian Agric. Eng., 33(1): 39-45, 1990.

CHI, L.: "Modeling mechanical behavior of agricultural soils", TRANSACTIONS of the ASAE , 36(6): 1563-1570, 1993, ISSN: 2151-0032, e-ISSN: 2151-0040.

CHI, L. y R. L. KUSHAWAHA: Study of mechanical properties of agricultural soil for non-linear F.E. model. En: International Winter Meeting of the American Society of Agricultural Engineers, December 13-16, pp., Hyatt Regency Chicago in Illinois Center. ASAE Paper: 88-1610, 1988, ISSN: 1682-1130.

CHI, L. y R. L. KUSHAWAHA: "Finite element analysis of forces on a plane soil blade", Canadian Agricultural Engineering, 31(1): 135-140, 1989.

CHI, L. y R. L. KUSHAWAHA: "Three dimensional finite element interactions between soil and a simple tillage tool", TRANSACTIONS of the ASAE , 34(2): 3623-3626, 1991, ISSN: 2151-0032, e-ISSN: 2151-0040.

CHI, L.; R. L. KUSHAWAHA y J. SHEN: "An elastoplastic constitutive model for agricultural cohesive soil", Canadian Agricultural Engineering , 35(4): 245-251, 1993.

CHIORESCU, D.; E. CHIORESCU y O. DODUN: Numerical simulation with the finite element using the contact between the soil and the actively workingbody. Memorias de MAT EC Web of Conferences, 2017, pp. 2017.

DE LA ROSA, A. A. A.; S. M. HERRERA; C. O. GONZÁLEZ; L. L. V. BENÍTEZ; P. I. CALZADA y P. L. GARCÍA: "Evaluación de la validez del modelo constitutivo Drucker Prager Extentido para la simulación de la respuesta mecánica de un Vertisol de la región central de Cuba", Revista Ciencias Técnicas Agropecuarias, 22(1): 27-35, 2013, ISSN: 1010-2760, e-ISSN: 2071-0054.

DRUCKER, D. C. y W. PRAGER: "Soil mechanics and plastic analysis or limit designs", Q. Appl. Math, 10: 157-165, 1952.

DUNCAN, J. M.: "Hyperbolic stress-strain relationships", In Proc. of the Worshop on Limit Equilibrium, plasticity and Generalizated Stress-Strain in Geotechinical Engineering. New York: ASCE: 443-460, 1980.

DUNCAN, J. M. y C. Y. CHAN: "Non linear analysis of stress and strain in soil", J. of Soil Mech. and Foundations. Division: American society of Civil Engineers, 96(SN): 1629-1653, 1970.

FONSECA, A. V.; S. A. E. SOUSA y A. S. CARDOSO: Finite element analyses of a shallow foundation on a residual soil from granite using Lade's model. Memorias de 3rd International Workshop on Applications of Computational Mechanics in Geotechnical Engineering, 1998, pp. 69-77, OPORTO, PORTUGAL. APPLICATIONS OF COMPUTATIONAL MECHANICS IN GEOTECHNICAL ENGINEERING 1998.

GONZÁLEZ, C. O.: Modelación de la compactación provocada por el tráfico de neumáticos, de los vehículos agríclolas, en suelos en condiciones de laboratorio. Tesis presentada en opción al grado cientifíco de Doctor en Ciencias Técnicas Agropecuarias, 123pp., Doctor en Ciencias, Centro de Mecanización Agropecuaria, Universidad Agraria de La Hababa "Fructuoso Rodríguez", La Habana, 2011.

GONZÁLEZ, C. O.; S. M. HERRERA; C. C. IGLESIAS y B. E. LÓPEZ: "Análsis de los modelos constitutivos empleados para simular la compatación del suelo mediante el método de elementos finitos", Revista Ciencias Técnicas Agropecuarias , 22(3): 75-80, 2013a, ISSN: 1010-2760, e-ISSN: 2071-0054.

GONZÁLEZ, C. O.; S. M. HERRERA; C. C. E. IGLESIAS; N. F. DIEGO; S. G. URRIOLAGOITIA y G. L. H. HERNÁNDEZ: "Modelo en elementos finitos de la interacción neumático-suelo", Revista Mexicana de Ciencias Agrícolas, (4): 664-671, 2012, ISSN: 2007-0934.

GONZALEZ, C. O.; S. M. HERRERA; C. C. E. IGLESIAS y B. E. LÓPEZ: "Modelos contitutivos Drucker Prager Extendido y drucker Prager Modificado para suelos Rhodic Ferrasol", Terra Latinoamericana, 32(4): 283-290, 2014, ISSN: 0187-5779.

GONZÁLEZ, C. O.; C. C. E. IGLESIAS; M. C. A. RECAREY; S. G. URRIOLAGOITIA; G. L. H. HERNÁNDEZ; C. G. URRIOLAGOITIA y S. M. HERRERA: "Three dimensional finite element model of soil compaction caused by agricultural tire traffic", Computers and Electronics in Agriculture, 99(1): 146-152, 2013b, ISSN: 0168-1699.

GRUJICIC, M.; T. HE; B. PANDURANGAN; W. C. BELL; B. A. CHEESEMAN; W. N. ROY y R. R. SKAGGS: "Development, parameterization, and validation of a visco-plastic material model for sand with different levels of water saturation", Proc. I Mech. E., 223, Part L: Journal of Materials: Design and Applications: 63-81, 2009.

HAMLAOUI, M.; A. OUESLATI; B. LAMRI y G. DE SAXCE: "Finite element analysis of the plastic limit load and the collapse mechanism of strip foundations with non-associated Drucker-Prager model", European Journal of Environmental and Civil Engineering, 19(10): 1179-1201, 2015, ISSN: 1964-8189.

HAMMI, Y.; T. W. STONE; B. PALIWAL; M. F. HORSTEMEYER y P. G. ALLISON: "Smooth yield surface constitutive modeling for granular materials", Journal of Engineering Materials and Technology, 139(1): 2017, ISSN: 0094-4289.

HERRERA, S. M.: Simulación del comportamiento mecánico de los suelos ferralíticos rojos mediante el método de elementos finitos, 109pp., Tesis (en opción al grado científico de Doctor en Técnicas Agropecuarias), Departamento de Mecanización Agrícola, Universidad Agraria de La Habana, La Habana, Cuba, 2006.

HERRERA, S. M.; C. O. GONZÁLEZ; N. F. DIEGO; V. J. RUIZ y C. C. E. IGLESIAS: "Simulación de la respuesta mecánica del suelo en la interfase suelo-herramienta de labranza", Rev. Fac. Ing. Univ. Antoquía, (69): 79-88, 2013.

HERRERA, S. M.; C. O. GONZÁLEZ; C. C. E. IGLESIAS; A. A. A. DE LA ROSA y R. MADRUGA: "Estudio de la exactitud de un modelo hiperbólico de Duncan y Chan en la predición de la realación esfuerzo deformación de tres suelos arcillosos cubanos.", Revista Ciencias Técnicas Agropecuarias , 19(4): 24-29, 2010, ISSN: 1010-2760, e-ISSN: 2071-0054.

HERRERA, S. M.; C. E. IGLESIAS; C. O. GONZÁLEZ; B. E. LÓPEZ y I. A. L. SÁNCHEZ: "Simulación mediante el Método de Elementos Finitos de la respuesta mecánica de un Oxisol", Revista Ciencias Técnicas Agropecuarias , 16(4): 55-61, 2008, ISSN: 1010-2760, e-ISSN: 2071-0054.

HIBBIT, K.: Abaqus Analysis User´s, Volume III, Materials.: Hibbitt, Karlsson, and Sorensen, Inc, Pawtucket, Rhode Island, pp. 180. 2008a.

HIBBIT, K.: Abaqus Theory. Hibbitt, Karlsson, and Sorensen, Inc, Pawtucket, Rhode Island, pp. 1176. 2008b.

HONG-CAI, W.; Z. WEI-HUA; S. DONG-SHENG y G. BIN-BIN: "Mohr-Colulomb yield criterion in rock plastic mechanics", Chinese Journal of Geophysics, 55(6): 733-741, 2012.

IBRAHMI, A.; H. BENTAHER; M. HBAIEB; A. MAALEJ y A. M. MOUAZEN: "Study the effect of tool geometry and operational conditions on mouldboard plough forces and energy requirement: Part 1. Finite element simulation", Computers and Electronics in Agriculture , XXX: 2015, ISSN: 0168-1699.

JOHNSON, C. E. y A. C. BAILEY: "A shearing strain model for cylindrical stress states.", ASAE, (90): 1990, ISSN: 1682-1130.

KONDNER, R. L. y J. S. ZELASKO: "A hyperbolic stress-strain response: Cohesive soil", Division: American society of Civil Engineers, J. of Soil Mech. and Foundations, 89(1): 115-143, 1963.

KUSHAWAHA, R. L. y J. SHEN: "Finite element analysis of the dynamic interaction between soil and tillage tool", TRANSACTIONS of the ASAE , 37(5): 1315-1319, 1995, ISSN: 2151-0032, e-ISSN: 2151-0040

LABUZ, J. y A. ZANG: "Mohr Colulomb criterion failure", Rock Mechanics and Rock Engineering, 45(6): 975-979, 2012.

LADE, P. V.: "Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces", Int. J. solids and Structure, 13(1): 1019-1035, 1977.

LADE, P. V. y S. BOONYACHUT: Large stress reversals in triaxial tests on sand. En: Fourth International Conference on Numerical Methods in Geomechanics, pp. 10, Canada, May 31 to June 4. 1982.

LADE, P. V. y R. B. NELSON: "Incrementalization procedure for elasto-plastic constitutive model with multiple intersecting yield surface.", Int. J. for Num. And Anal. Meth. in Geomechanics, 8(1): 311-323, 1984.

LI, Y.; Y. WANG; Y. WANG y C. MA: "Effects of root spatial distribution on the elastic-plastic properties of soil-root blocks", Scientific Reports, 7(1): 800, 2017.

MENDOZA, C.; M. FARIAS y R. P DA CUNHA: "Validación de modelos constitutivos avanzados de comportamiento mecánico para la arcilla estructurada de Brasilia . 52-70. 10.4067/S0718-28132014000100005. ", Obras y proyectos, (0718-2813): 52-70, 2014.

MOLNAR, I. A.: "Finite element method study on stress state in soil induced by agricultural traffic", Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Agriculture, 73(2): 275-279, 2016.

MOSLEM, N. y G. HOSSEIN: "Numerical simulation of tire/soil interaction using a verified 3D finite element model", Journal of Central South University, 21(2): 817-821, 2014.

MOUAZEN, A. M. y M. NEMÉNYI: "Finite elements analysis of subsoiler cutting in non homogeneous sandy loam soil", Journal Soil & Tillage Research, 39(3): 115-126, 1999a.

MOUAZEN, A. M. y M. NEMÉNYI: "Tillage tool design by the finite element method: Part 1. Finite element modelling of soil plastic behaviour", Journal of Agricultural Engineering Research, 72(1): 37-51, 1999b.

MOUAZEN, A. M.; M. NEMÉNYI; H. SCHWANGHART y M. REMPFER: "Tillage tool design by the finite element method: Part 2. Experimental validation of the finite element results with soil bin test", Journal of Agricultural Engineering Research , 72(1): 53-58, 1999.

MUNDA, J.; P. K. PRADHAN y A. K. NAYAK: "Review on the performance of Modified Cam Clay Model for fine grained soil", Journal of Civil Engineering and Environmental Technology, 1(5): 65-71, 2014.

NANKALI, N.; M. NAMJOO y M. R. MALEKI: "Stress Analysis of Tractor Tire Interacting with Soil using 2D Finite Element Method", International Journal of Advanced Design and Manufacturing Technology, 5(3): 107-111, 2012.

NASIRI, M.; M. SOLTANI y A. M. MOTLAGH: "Determination of agricultural soil compaction affected by tractor passing using 3D finite element", Agric Eng Int: CIGR Journal, 15(3): 11-16, 2013.

NIETO, L. A.; T. J. CAMACHO y B. E. RUIZ: "Determinación de parámetros para los modelos elastoplásticos Mohr-Coulomb y Hardening Soil en suelos arcillosos", Revista Ingeniería Universidad de Medellín, 8(15): 75-91, 2009.

PLOUFFE, C.; C. LAGUË; S. TESSIER; M. J. RICHARD y N. B. MCLAUGHLIN: "Moldbordplow performance in a clay soil: simulations and experiment", TRANSACTIONS of the ASAE . American Society of Agricultural Engineers, 42(6): 1531-1539, 1999.

POODT, M. P.; A. J. KOOLEN y J. P. VAN DER LIDEN: "FEM analysis of subsoil reaction on heavy wheel loads with emphasis on sol precosolidation stress and cohesión", Soil & Tillage Research, 73(1): 67-76, 2003.

RASHIDI, M. y M. GHOLAMI: "Non-linear modeling of soil sinkage by multiple loadings the finite element method", Journal of Agricultural and Biolical Science, 6(3): 74-80, 2011.

ROSA, U. A. y D. WULFSOHN: "Constitutive model for high speed tillage using narrow tools", Journal of Terramechanics, 36(4): 221-234, 1999.

ROSCOE, K. H. y J. B. BURLAND: On the generalized stress-strain behavior of wet clay . In: Engineering Plasticity. En: Leckie, J. H. a. F. (ed.). Cambridge, England, pp. 535-609, 1968.

ROSCOE, K. H.; A. N. SCHOFIELD y C. P. WROTH: "On the yielding of soils", Geomechnique, 8(1): 22-53, 1958.

SEKHAVATIAN, A. y C. A. JANALIZADEH: "Comparison of constitutive soil models in predicting movements caused by an underground excavation", International Journal of Soil Science, 13(1): 2018.

SHEN, J. y R. L. KUSHAWAHA (eds.) 1998. Soil-Machine interactions: A finite element perspective ., New York: Marcel Dekker, Inc.

SHIN, H.; J.-B. KIM; S.-J. KIM y K. RHEE: "A simulation-based determination of cap parameters of the modified Drucker-Prager cap model by considering specimen barreling during conventional triaxial testing", Computational Materials Science, 100, Part A: 31-38, 2015.

TEKESTE, M. Z.; D. H. HABTZGHI y A. J. JOS KOOLEN: "Cap-hardening parameters of Cam-clay model variations with soil moisture content and shape-restricted regression model", Agric Eng Int: CIGR Journal , 15(2): 10-24, 2013.

TIMOSHENKO, S. y J. N. GOODIER: Theory of elasticity , Ed. Mc. Graw, 3 ed, New York, 1970.

UCGUL, M.; J. M. FIELKE y C. SAUNDERS: "Three-dimensional discrete element modelling of tillage: Determination of a suitable contact model and parameters for a cohesionless soil", Biosystems Engineering, 121(0): 105-117, 2014.

WULFSOHN, D. y B. A. ADAMS: Elastoplatic soil mechanics. Advances in Soil Dynamic, St. Joseph, Michigan, 2002.

YOUNG, R. N. y A. W. HANNA: "Finite element analysis of plane soil cutting", J. Terramech. -:, 14(3): 103-125, 1977.

ZHANG, Q.; V. M. PURI y H. B. MANBECK: "Determination of elastoplastic constitutive parameters for wear en masse", TRANSACTIONS of the ASAE , 29(6): 1739-1746, 1986, ISSN: 2151-0032, e-ISSN: 2151-0040.

 

 

 

 


Alain Ariel de la Rosa Andino, Prof. Auxiliar. Universidad de Granma. Facultad de Ciencias Técnicas. Dpto. de Ingeniería Mecánica. Carretera a Manzanillo, km 17 ½, Peralejo-Apartado 21-Bayamo, M. N. Código Postal 85149. Provincia Granma. Cuba. e-mail: arosaa@udg.co.cu

Danelys Pérez Sutil, Prof. Instructor. Universidad de Granma. Facultad de Educación Media. Centro de Idiomas Manzanillo. Código Postal 87510. Provincia Granma. Cuba, e-mail: arosaa@udg.co.cu

Yordanka Aguilera Corrales, Prof. Asistente. Universidad de Granma. Facultad de Educación Media. Centro de Idiomas. Manzanillo. Código Postal 87510. Provincia Granma. Cuba, e-mail: arosaa@udg.co.cu

Miguel Herrera Suárez, Prof. Titular. Departamento de Ingeniería Agrícola, Universidad Técnica de Manabí. Portoviejo, Ecuador, e-mail: miguelhs2000@yahoo.com

Omar González Cueto, Prof. Auxiliar Universidad Central de Las Villas. Dpto. Mecanización Agropecuaria, Villa Clara, Cuba, e-mail: omar@uclv.edu.cu

Idalberto Macías Socarras, Universidad Estatal Península de Santa Elena, Escuela de Agrarias, La Libertad-Santa Elena, Ecuador, e-mail: e-mail: arosaa@udg.co.cu

The authors of this work declare no conflict of interest.

This article is under license Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)

The mention of commercial equipment marks, instruments or specific materials obeys identification purposes, there is not any promotional commitment related to them, neither for the authors nor for the editor.


 

REVISIÓN

 

Modelos constitutivos empleados en la modelación de la respuesta mecánica de los suelos agrícolas


RESUMEN

Dada la importancia que tiene conocer la respuesta mecánica del suelo como una de las variables a tener en cuenta en el diseño de los aperos y maquinas capaces de conservar las cualidades físicas del suelo se han desarrollado varios modelos constitutivos que representan al suelo un material no lineal elástico o elastoplástico. El presente trabajo tuvo como objetivo analizar el estado actual de los modelos constitutivos empleados en la modelación de suelos agrícolas. Permitiendo definir cuál de ellos es el más adecuado para simular la respuesta mecánica de suelos agrícolas con textura arcillosa (Oxisol, Inceptisol y Vertisol). En el mismo se analizan críticamente los modelos constitutivos que se emplean en la simulación de la respuesta mecánica de los suelos agrícolas mediante el método de elementos finitos, teniendo en cuenta las propiedades y parámetros de entrada, determinación de estos y su implementación en los softwares para la simulación mediante el método de elementos finitos. Finalmente, se concluye que el modelo Drucker Prager Extendido como el más adecuado para simular la repuesta mecánica de un Oxisol, primando en esta decisión su sencillez, conveniencia a la hora de determinar sus parámetros, exactitud en la estimación de la relación esfuerzo-deformación del suelo, y la inclusión en la mayoría de los software comerciales.

Palabras clave: 

simulación; respuesta mecánica; elementos finitos.


INTRODUCCIÓN

Para la simulación de la respuesta mecánica del suelo mediante el método de elementos finitos se han desarrollado varios modelos constitutivos, puesto que el comportamiento material del mismo es bastante difícil de describir, dada la gran variedad de suelos existentes además de que cuando es sometido a esfuerzos la respuesta es no lineal, tanto en el proceso de carga como en el de descarga (Wulfsohn y Adams, 2002).

Shen y Kushawaha, (1998), clasificaron los modelos constitutivos que se emplean para describir la relación esfuerzo-deformación del suelo, como: Modelos lineales y no lineales (atendiendo a la forma de la curva esfuerzo-deformación), Modelos elásticos, plásticos y elastoplásticos (según la plasticidad del material), Modelos estáticos y dinámicos (en función de la inclusión, o no, del tiempo).

Dentro de estos, los modelos lineales encuentran su mayor aplicación en análisis de tensiones en elementos estructurales, siendo los no lineales los modelos que gozan de mayor utilización en estudios relacionados con la mecánica de suelos agrícolas. Atendiendo a los elementos que definen la elasticidad y la plasticidad de los suelos, los modelos elastoplásticos son los más empleados en la simulación de su repuesta mecánica al ser interactuado por los órganos de trabajo de los aperos de labranza, pues en función de la magnitud de las cargas aplicadas estos asumen que el suelo puede sufrir deformaciones plásticas, elásticas o elastoplásticas (Shen y Kushawaha, 1998).

A nivel internacional se han desarrollado varios modelos constitutivos que muestran el suelo como un material no lineal elástico o elastoplástico. De estos han alcanzado mayor utilización los modelos elastoplástico de Morh-Coulomb (1776), citado por Drucker y Prager (1952) en sus versiones extendido y modificado; Cam Clay o Cambridge desarrollados por Roscoe et al. (1958) y posteriormente modificado por Roscoe y Burland (1968); el modelo no lineal elástico desarrollado inicialmente por Kondner y Zelasko (1963) y modificado por Duncan y Chan (1970); el elastoplástico de Lade (1977), y el modelo plástico de Bailey et al. (1984).

Por lo anteriormente expuesto el presente trabajo tuvo como objetivo analizar el estado actual de los modelos constitutivos empleados en la modelación de la respuesta mecánica de los suelos agrícolas. Permitiendo definir cuál de ellos es el más adecuado para simular la respuesta mecánica de los suelos agrícolas con textura arcillosa (Oxisol, Inceptisol y Vertisol), todo ello teniendo como premisa la exactitud de las predicciones, sus ventajas y desventajas así como, a la inclusión o no en los programas profesionales para este fin.

MODELOS CONSTITUTIVOS

El modelo de Mohr-Coulomb. Se basa en el criterio de falla lineal de Mohr-Coulomb, el cual producto de su sencillez y comodidad es muy empleado en investigaciones de suelos tanto de textura arcillosa como arenosa, así como en estudios de rocas y hormigón (Hong-Cai et al., 2012; Herrera et al., 2013; Consoli et al., 2014; Camacho y Ramos, 2016; Molnar, 2016; Chang y Konietzky, 2018; Sekhavatian y Janalizadeh, 2018), sin embargo, no ha sido muy utilizado para la simulación de la interacción suelo-apero de labranza (Bhaveshkumar y Prajapati, 2011). Generalmente este criterio de rotura se define en función de la tensión tangencial y la tensión normal en un plano, pero se puede transformar de forma tal que las tensiones se puedan representar en tres dimensiones (Figura 1). Aunque representado de esta última forma tiene como deficiencia la presencia de esquinas en su sección hexagonal (Abbo et al., 2011; Labuz y Zang, 2012).

2071-0054-rcta-28-03-e10-gf6.jpg

FIGURA 1. 

Modelo de Mohr-Coulomb. a) Superficie de falla Mohr-Coulomb en el espacio de las tensiones principales (Nieto et al., 2009); b) Superficie de fluencia Mohr-Coulomb en el plano de los esfuerzos desviadores (Hibbit, 2008a).

Este modelo comprende que el potencial de flujo del suelo es lineal y continuo en el plano meridional de los esfuerzos (q-p), asegurando que la dirección del flujo se defina únicamente en este plano, por lo que en este caso el suelo fluye de manera asociada (Figura 2), e incluye también que una vez que el suelo comienza a fluir plásticamente, puede deformarse por endurecimiento o ablandamiento.

2071-0054-rcta-28-03-e10-gf7.jpg

FIGURA 2. 

Familia de potencial de flujo hiperbólico Mohr-Coulomb en el plano meridional (Hibbit, 2008b).

Aparece implementado en la mayoría de los softwares comerciales disponibles para la simulación mediante el método de elementos finitos, necesitando seis parámetros como datos de entrada, los cuales pueden ser determinados a través de los ensayos convencionales (cortante directo y compresión triaxial) que se realizan en laboratorios de mecánica de suelos. Ha sido utilizado ampliamente en estudios relacionados con la determinación de la respuesta mecánica del suelo tanto de textura arenosa como arcillosa (Rashidi y Gholami, 2011; Herrera et al., 2013).

Según Bishop (1966), ajusta mejor los datos experimentales que el criterio de Drucker y Prager (1952); sin embargo, Herrera et al. (2008), obtuvieron evidencias de que el modelo de Mohr-Coulomb no es capaz de predecir con la exactitud requerida el estado tensional del suelo y sus deformaciones, máxime cuando el suelo se deforma por ablandamiento. Encontraron además que, en este modelo tanto la dilatancia como el endurecimiento jugaron un papel secundario en las predicciones. Para las condiciones de humedad (40% de humedad) donde el suelo mostró una falla plástica, se obtuvieron buenos resultados en las predicciones siempre y cuando se consideró en el modelo que el suelo no se podía deformar por endurecimiento. A partir de estos resultados, los referidos autores no consideran, este modelo como adecuado para la simulación de la respuesta mecánica de los oxisoles.

El modelo de Drucker-Prager, fue desarrollado para representar la deformación plástica de los suelos (Drucker y Prager, 1952). Se rige por un criterio de fluencia dependiente de la presión aplicada que determina si el material ha sobrepasado el límite elástico o no. Constituye una versión más ajustada del modelo de Mohr-Coulomb, por lo que puede ser expresado en función de la cohesión y el ángulo de fricción interna. El modelo original y sus variantes han sido recientemente aplicados a estudios de suelos, rocas, hormigón, espumas, polímeros y otros materiales (Ucgul et al., 2014; Hamlaoui et al., 2015; Shin et al., 2015; Hammi et al., 2017), encontrando gran aplicación en investigaciones relacionadas con la simulación de la respuesta mecánica del suelo, interacción neumático-suelo, compactación del suelo, e interacción suelo-apero de labranza (Herrera, 2006; Herrera et al., 2008; Biris et al., 2009; González, 2011; González et al., 2012; Nankali et al., 2012; González et al., 2013a; González et al., 2013b; Nasiri et al., 2013; Armin et al., 2014; Gonzalez et al., 2014; Moslem y Hossein, 2014; Ibrahmi et al., 2015; Chiorescu et al., 2017).

Cuando se representa en tres dimensiones se utiliza una superficie cónica (Figura 3), que lo hace más adecuado desde el punto de vista matemático, pues se soluciona el problema de las esquinas de la sección hexagonal que aparecen en la pirámide del modelo de Mohr-Coulomb (Shen y Kushawaha, 1998).

2071-0054-rcta-28-03-e10-gf8.jpg

FIGURA 3. 

Modelo de Drucker-Prager a) Superficie de fluencia Drucker Prager Extendido en el espacio de las tensiones principales con sección cónica (Mouazen y Neményi, 1999b). b) Superficie de fluencia Drucker Prager Extendido en plano de los esfuerzos desviadores (Hibbit, 2008a).

Dicho modelo comprende la posibilidad de considerar al suelo como un material dilatante que fluye en la dirección normal a la superficie de fluencia, tomando el ángulo de dilatancia el mismo valor que el ángulo de la superficie de fluencia Ψ=β. Este mismo criterio fue utilizado con éxito por Mouazen y Neményi (1999b), Mouazen y Neményi (1999a) y Mouazen et al. (1999) durante la simulación del corte de un suelo franco arenoso Mouazen et al. (1999) durante la simulación del corte de un suelo franco arenoso por una herramienta de labranza. Aunque investigadores como Grujicic et al. (2009), refirieron que cuando en este modelo se aplica el criterio de flujo se obtienen una excesiva dilatanción que afecta a la exactitud de las predicciones, y ello constituye un factor limitante del modelo.

El modelo además posibilita considerar al suelo como un material no dilatante a partir de la implementación de una regla de flujo no asociada, donde el suelo no fluye en la dirección normal a la superficie de fluencia, siendo Ψ<β. Con esta configuración fue utilizado por Herrera (2006); Herrera et al. (2008) y González (2011) en la simulación de la respuesta mecánica (interacción suelo-apero de labranza y compactación de suelo) de un Oxisol, obteniéndose que las predicciones más exactas tuvieron lugar al considerar la regla de flujo no asociada Ψ<β (Herrera, 2006; Herrera et al., 2008), no siendo así en las investigaciones desarrolladas por González (2011).

Posteriormente este modelo fue utilizado por de la Rosa et al. (2013), con el objetivo de evaluar su validez del mismo en la simulación de la respuesta mecánica de un Vertisol de la región central de Cuba. Todo ello teniendo en cuenta las posibilidades que presenta el modelo de predecir los cambios de tensiones producto de la deformación por ablandamiento o endurecimiento con gran exactitud. Así como a los pocos parámetros que requiere como datos de entrada, los cuales se pueden obtener en los laboratorios de mecánica de suelos a través de ensayos convencionales (cortante plano y compresión triaxial) y a la inclusión del mismo en la mayoría de los programas profesionales para la simulación mediante el método de elementos finitos.

Los resultados de la investigación arrojaron que la exactitud del modelo Drucker Prager Extendido en la predicción de la respuesta mecánica del Vertisol, depende del estado de humedad y densidad del suelo, así como de la configuración del modelo oscilando el error medio absoluto desde 8,58% al 27,93%. Pues la mayor exactitud en la predicción de la relación esfuerzo deformación se alcanzó cuando se consideró al suelo como un material dilatante (Ψ=β) y el coeficiente que relaciona los esfuerzos desviadores (K) estuvo en función del contenido de humedad y estado de densificación del suelo (K=0,8; K=calculado y K=1). Al considerar al suelo como un material no dilatante (Ψ=0) e independientemente del valor que tome (K), se presentaron impresiones numéricas que imposibilitaron la convergencia de las soluciones, una vez los esfuerzos desviadores sobre pasaron el valor de la tensión de fluencia. Resultado que permite afirmar que este modelo presenta dificultades para predecir la respuesta mecánica del suelo una vez que los esfuerzos desviadores sobre pasan el valor de la tensión de fluencia. Por lo que los parámetros que originan las inexactitudes están relacionados a la fase de deformación plástica y no a la elástica, pues en esta última los errores en la predicción son menores.

El modelo Cam Clay. Según Munda et al. (2014), es uno de los modelos más usados para representar la respuesta mecánica de las arcillas normalmente consolidadas. Fue desarrollado por Roscoe et al. (1958), para arcillas normalmente consolidadas o ligeramente consolidadas (Figura 4), posteriormente fue modificado por Roscoe y Burland (1968), para explicar la deformación plástica y volumétrica del suelo antes y después de que ocurra la falla del mismo, utilizando una superficie de fluencia del tipo capsula (Herrera, 2006). Este modelo ha tenido gran aplicación en estudios relacionados con la resistencia mecánica de los suelos en sentido general (Mendoza et al., 2014). Para el caso de los suelos agrícolas ha sido empleado fundamentalmente en estudios relacionados a la compactación de suelos Tekeste et al. (2013), aunque también han encontrado aplicaciones en la simulación de la interacción suelo-apero de labranza Plouffe et al. (1999) y neumático-suelo (Poodt et al., 2003). Su mayor virtud es la exactitud para predecir los cambios de volumen del suelo, adecuándose tanto para suelos cohesivos como para arenosos, además de predecir con exactitud la relación esfuerzo-deformación.

2071-0054-rcta-28-03-e10-gf9.jpg

FIGURA 4. 

Superficie de fluencia y trabajo de endurecimiento. a) modelo Cam Clay; modelo CAP. b) modelo CAP (Chi, 1993).

Sin embargo, tiene como desventajas una alta demanda de recurso computacional González et al. (2013a), además de requerir entre 11 y 14 parámetros de entrada según como este implementado el modelo, los cuales exigen un equipamiento especializado para su determinación. Por otro lado Mendoza et al. (2014), reportaron que este modelo no es capaz de representar todas las características para suelos de textura arcillosa.

El modelo hiperbólico de Duncan y Chan. Es un modelo no lineal elástico que parte del supuesto de que las curvas esfuerzos-deformación pueden aproximarse a una hipérbola, el mismo fue propuesto inicialmente por Kondner y Zelasko (1963) y posteriormente fue presentado de forma incremental por Duncan y Chan (1970), basado en el empleo de un coeficiente de Poisson constante, lo que implicó una relación lineal entre la tensión axial y la deformación volumétrica, representando esto una limitación del modelo. Más adelante Duncan (1980), sugiere una nueva ecuación para el módulo volumétrico, aunque esto aún seguía siendo una limitación del modelo. El mismo ha sido utilizado con éxito en suelos arenosos, arcillosos y limosos, exhibiendo gran capacidad para predecir con exactitud la relación esfuerzo-deformación del suelo cuando presenta una falla plástica Chi y Kushawaha, (1988); Chi (1990); Chi y Kushawaha (1991); Herrera et al. (2010), así como en el análisis de correlación entre las características espaciales de las raíces y las propiedades elásticas-plásticas del suelo (Li et al., 2017). Sin embargo, su principal limitación consiste en la incapacidad de predecir los cambios de tensiones producto de la deformación por ablandamiento o endurecimiento. Chi y Kushawaha (1988), refieren como deficiencia de este modelo, la naturaleza monótona de la función una vez que las tensiones se incrementan con el aumento de las deformaciones. Herrera et al. (2010), encontraron esta misma deficiencia observada por Chi y Kushawaha (1988), en tres suelos arcillosos cubanos (Oxisol, Inceptisol, Vertisol). Otra limitación que presenta es que no aparece implementado en la mayoría de los softwares comerciales empleados para la simulación computacional mediante el método de elementos finitos.

Sin embargo, a pesar de esta limitaciones, este modelo es uno de los que mayor utilización alcanzó en la simulación de la interacción suelo-apero de labranza a finales del siglo pasado Young y Hanna (1977); Bailey et al. (1984); Chi y Kushawaha (1989); Chi (1990); Chi y Kushawaha (1991); Kushawaha y Shen (1995); Rosa y Wulfsohn (1999), pues el mismo cumple con los requisitos propuestos por Chi (1993), para la selección de los modelos constitutivos, es decir: sencillez; posibilidad de determinación de los parámetros y conveniencia de implementación.

El modelo elasto-plástico de Lade. Está basado en un criterio especial de fluencia para suelos poco cohesivos (Lade, 1977). Dentro de este modelo son usadas dos teorías del trabajo de endurecimiento, la primera para la superficie de fluencia tipo CAP (Figura 5), y la otra para una superficie de fluencia cónica (Lade, 1977; Lade y Boonyachut, 1982). Este modelo se aplica fundamentalmente a materiales granulares poco cohesivos (Zhang et al., 1986; Fonseca et al., 1998).

2071-0054-rcta-28-03-e10-gf10.jpg

FIGURA 5. 

Superficie de fluencia cónica del modelo elastoplástico de Lade (Shen y Kushawaha, 1998).

En esta teoría, el incremento total de la tensión se divide en los siguientes componentes:

  • La componente de las deformaciones incrementales elásticas, las cuales son calculadas a través de la Ley generalizada de Hooke (Timoshenko y Goodier, 1970);

  • La componente de las deformaciones incrementales producto de la deformación plástica. Esta deformación no es recuperable durante la descarga. El colapso plástico, según la teoría de la plasticidad, está gobernado por la función de la superficie de fluencia (Lade, 1977);

  • La componente incremental de las deformaciones expansivas plásticas. Las mismas son irrecuperables producto de la acción de los esfuerzos desviadores. El comportamiento expansivo está gobernado por la superficie de fluencia de Lade (1977).

Posteriormente este modelo fue mejorado por Lade y Nelson (1984) en donde desarrollaron un procedimiento para establecer una matriz incremental con intersección de superficies de fluencias múltiples, posibilitando considerar al suelo como un material dilatante o no dilatante, a partir de la implementación de una regla de flujo asociada o no asociada con respecto a cada superficie de fluencia. Se incluyó la posibilidad de predecir los cambios de tensiones producto de la deformación por ablandamiento o endurecimiento. Sin embargo, en la investigación realizada por Chi et al. (1993), se corrobora que la ecuación de Lade no predice con exactitud la respuesta mecánica de los suelos cohesivos, especialmente cuando las deformaciones volumétrica son mayores que el 10%.

Otra de sus desventajas consiste en que no aparece implementado en los principales softwares disponibles comercialmente para la simulación a través del método de elementos finitos, además de necesitar más parámetros como datos de entrada que otros modelos (14 en total), los cuales deben ser obtenidos con ensayos convencionales en los laboratorios de mecánica de suelos, pero necesitando instrumentación especializada.

El modelo de Bailey. Se ha sido utilizado en estudios relacionados con la compactación de suelos agrícolas, en los cuales se ha demostrado que tiene gran exactitud para predecir la deformación volumétrica bajo compresión hidrostática (Bailey et al., 1984; Chi, 1993). Expresa la compactación del suelo mediante un modelo exponencial que fue modificado por Bailey y Johnson (1989), para incluir la tensión de falla o rotura. Posteriormente Johnson y Bailey (1990), propusieron una nueva ecuación para incluir en las deformaciones volumétricas las deformaciones debidas a los esfuerzos cortantes.

Este modelo presenta como desventajas que no aparece implementado en la mayoría de los softwares disponibles comercialmente para la simulación a través del método de elementos finitos, aunque solo necesita seis parámetros de entrada para la implementación de los modelos. Los mismos no pueden ser determinados a través de los ensayos convencionales en los laboratorios de mecánica de suelos, debido a que necesita de instrumentación especializada.

CONCLUSIONES

  • De los modelos descritos anteriormente, los que gozan de más utilización en la simulación de respuesta mecánica de los suelos agrícolas son los modelos de Drucker Prager Extendido, Cam Clay y el de Duncan Chan, sin embargo de estos dos últimos, el primero, necesita una alta demanda de recurso computacional, además de requerir entre 11 y 14 parámetros de entrada según como este implementado, los cuales exigen un equipamiento especializado para su determinación. Y el último (Duncan Chan) no aparece implementados en la mayoría de los sotfwares disponibles comercialmente mediante el empleo del método de elementos finitos.

  • Finalmente se concluye que el modelo Drucker Prager Extendido como el más adecuado para simular la repuesta mecánica de un Oxisol, primando en esta decisión su sencillez, conveniencia a la hora de determinar sus parámetros, exactitud en la estimación de la relación esfuerzo-deformación del suelo, y la inclusión en la mayoría de los software comerciales.