

TECNOLOGÍA DE RIEGO U DRENAJE

ARTÍCULO ORIGINAL

Características físicas que definen el comportamiento hidráulico de algunos suelos de Cuba

Physical characteristics define the hydraulic behavior some soils of Cuba

Greco Cid¹; Teresa López¹; Felicita González²; Julián Herrera¹ y María Elena Ruiz³

RESUMEN. Se puede afirmar que desde los trabajos realizados por Nakaidze y Simeón en 1972 y Klimer *et al.*, 1980 en Cuba no se han publicado trabajos tan abarcadores sobre las características físicas de los suelos de importancia agrícola. Desde hace más de tres décadas el antiguo Instituto de Investigaciones de Riego y Drenaje, actual Instituto de Investigaciones de Ingeniería Agrícola ha trabajado de manera sistemática en la caracterización física de los suelos bajo riego, lo que sirvió de base para el diseño, proyección, manejo y explotación de los sistemas de riego, sin embargo este esfuerzo no se tradujo en la creación de una base de datos que estuviera disponible para los investigadores y especialistas, sino que se limitó a que se publicaran algunos de estos resultados aislados según fuera el interés de investigadores y especialistas. La mayor demanda de información sobre física de suelos tuvo lugar a mediado de los años 80 con la generalización del método del Pronóstico de Riego y el completamiento del Mapa Nacional de Suelos a escala 1:25 000, lo que impulsó de manera notable el acondicionamiento de laboratorios para que incluyeran entre sus servicios la caracterización física de los suelos. Sin embargo a principios de los años 90 esta actividad se deprimió en todo el país, limitándose los estudios a intereses muy puntuales de instituciones o especialistas. Por tal razón se impone una actualización de la información de física de suelos que contemple los nuevos conceptos y procedimientos que se vienen utilizando en la física de suelo actual. El presente trabajo tiene como propósito actualizar la información de Suelos

Palabras clave: suelo, propiedades físicas, riego y drenaje.

ABSTRACT. We can say that from the work done by Nakaidze and Simeon in 1972 and Klimer *et al.*, 1968, in Cuba there are no published works as encompassing the physical characteristics of the soils of agricultural importance. For more than three decades, the former Research Institute of Irrigation and Drainage, current Research Institute of Agricultural Engineering has worked consistently in the physical characterization of the irrigated soils, which formed the basis for the design, planning, management and operation of irrigation systems, but this effort did not result in the creation of a database that was available to researchers and specialists, but merely to be published some of these results was isolated according to the interest of researchers and specialists. Increased demand for information on soil physics took place in the mid-80's with the widespread irrigation scheduling method, and completion of the national soil map at 1:25 000, which significantly boosted the preparation of laboratories to include among its services the physical characterization of soils. But in the early 90's this activity was depressed throughout the country, limiting the studies to very specific interests of institutions or specialists. For this reason it requires an update of the information on soil physics that covers the new concepts and procedures that have been used in soil physics today. This paper aims to update the information on the physical characteristics of 24 profiles of the major agricultural soils in the country, based on the New Soil Classification.

Keywords: Soils, physical properties, irrigation and drainage.

Recibido 15/06/11, aprobado 20/07/12, trabajo 15/12.

¹ Dr.C., Inv. Titular, Instituto de Investigaciones de Ingeniería Agrícola (IAgric), Carretera de Fontanar, km. 2½, Reparto Abel Santamaría, Boyeros, La Habana, Cuba, Teléf.: (53) (7) 645-1731 y 645-1353, e-mail: greco@iagric.cu

² M.Sc., Inv. Auxiliar, Instituto de Investigaciones de Ingeniería Agrícola (IAgric).

³ Dr.C., Prof. Titular, Universidad Agraria de La Habana, Grupo de Agrofísica.

INTRODUCCIÓN

El presente articulo está precedido de otro realizado el año anterior cuyo propósito fundamental fue el de poner a disposición de especialistas e investigadores que trabajan con modelos de simulación de aquellos datos de física e hidrofísica de algunos suelos de Cuba que constituyen entradas imprescindibles de dichos modelos. En esa ocasión se presentaron 12 perfiles de suelo bajo el criterio de las condiciones edafoclimáticas y de las clasificaciones agroproductivas (Mesa y Suárez, 1978).

Desde los trabajos realizados por Nakaidze y Simeón (1972) y Klimer et al., (1980), en Cuba no se han publicado trabajos tan abarcadores sobre las características físicas de los suelos de importancia agrícola. Desde hace más de tres décadas el antiguo Instituto de Investigaciones de Riego y Drenaje, actual Instituto de Investigaciones de Ingeniería Agrícola ha trabajado de manera sistemática en la caracterización física de los suelos bajo riego, lo que sirvió de base para el diseño, proyección, manejo y explotación de los sistemas de riego y drenaje, sin embargo este esfuerzo no se tradujo en la creación de una base de datos que estuviera disponible para los investigadores y especialistas, sino que se limitó a que se publicaran algunos de estos resultados aislados según fuera el interés de investigadores y especialistas.

En varios campos de estudio del medio ambiente, la falta de parámetros seguros de las propiedades hidrológicas de los suelos es considerado el mayor obstáculo. Con la obra de Benett y Allison (1928) primero, y luego con el impulso dado por la revolución al desarrollo del conocimiento de los recursos del país, que permitió la realización de un mapa a escala 1: 50 000

en 1972 y más recientemente al mapa 1: 25 000, se puede afirmar que hay un amplio conocimiento en el país sobre la taxonomía de nuestros suelos y las características cualitativas, no así respecto a las propiedades físicas, las que aún no han sido ordenadas de modo que sean de fácil uso al interesado.

La mayor demanda de información sobre física de suelos tuvo lugar a mediado de los años 80 con la generalización del método del Pronóstico de Riego (MINAG, 1982) y el completamiento del Mapa Nacional de Suelos a escala 1:25 000 (Dirección Nacional de Suelos y Fertilizantes (DNSF), 1985), lo que impulsó de manera notable el acondicionamiento de laboratorios para la caracterización física de los suelos. Sin embargo a principios de los años 90 esta actividad se deprimió en todo el país, limitándose los estudios a intereses muy puntuales de instituciones o especialistas. Por tal razón se impone una actualización de la información de física de suelos que contemple los nuevos conceptos y procedimientos que se vienen utilizando en la física de suelo actual. El presente trabajo tiene como propósito actualizar la información de las características físicas de 24 perfiles de los suelos de mayor importancia agrícola en el país, tomando como base la Nueva Clasificación de Suelos (Hernández et al., 1999).

MÉTODOS

En la Tabla 1 se relacionan las propiedades físicas y otros parámetros de los suelos que comúnmente son utilizados para el diseño y proyección de los sistemas de riego y drenaje, la manera en que se expresan y cómo se determinan.

TABLA 1. Propiedades físicas y otros parámetros hidropedológicos

PROPIEDADES	UNIDAD	MÉTODO DE DETERMINACIÓN
Distancia de difusión efectiva.	mm	Test de Henin
Conductividad hidráulica frontera	mm/día	Método de Hoyo de Barrena
Humedad volumétrica frontera	% Vol.	Método Gravimétrico
Factor de tortuosidad	-	Exponente "n" modelo Brooks y Corey
Tensión del agua frontera	cm	Caja de Arena y Kaolín-Arena
Conductividad hidráulica saturada	mm/hora	Método de anillos infiltrómetros.
Humedad de saturación	% Vol	Método gravimétrico
Índice distribución tamaño de poros	-	Curvas Características
Pendiente de la curva de encogimiento	-	Curvas de Encogimiento
Espesor de la capa de suelo	cm	
Humedad a la capacidad de campo.	% peso	Método de la Plazoleta
Humedad Punto de marchitez permanente.	% peso	Curvas Características
Densidad Aparente.	g/cm ³	Anillos, Parafina o Petróleo
Contenido de arcilla	%	Pipeta de Robinson
Contenido de arena	%	Pipeta de Robinson
Contenido de limo	%	Pipeta de Robinson
Humedad Total aprovechable por las plantas (LSAD – LIAD)	mm/m	Fórmula
Tasa máxima de infiltración	mm/día	Método de anillos infiltrómetros
Profundidad máxima de enraizamiento	cm	Depende del tipo de cultivo
Humedad Inicial	%	Método gravimétrico
Humedad Inicial Aprovechable	mm/m	Método gravimétrico
Coeficiente de Drenaje	-	Método de la Plazoleta

A partir de un diagnóstico se identificaron 24 perfiles considerando diferentes zonas edafoclimáticas y donde la actividad del riego es imprescindible para la obtención de una producción agrícola aceptable.

La relación de suelos se presenta según la última clasificación vigente en el país (Hernández, *et al.*, 1999).

Para la creación de la base de datos de propiedades físicas e hidrofísicas de los perfiles identificados se recopiló toda la información existente al respecto en el antes Instituto de Investigaciones de Riego y Drenaje hoy Instituto de Investigaciones de Ingeniería Agrícola.

Después de una revisión profunda de dicha información se confeccionó una relación de aquellas propiedades que requerirían una comprobación *in situ*, a consecuencia de las modificaciones que sufren en el tiempo y el espacio debido al uso agrícola continuado. Para ello se estableció una estrategia que consistió en la selección de puntos de control en los mismos escenarios donde se realizaron los estudios iniciales, permitiendo de esta forma obtener datos mucho más precisos de aquellas propiedades que tienden a cambiar de manera notable cuando es modificada su estructura. La metodología utilizada en los trabajos realizados se apoyó en los trabajos de Cid (2004 y 2006).

La densidad aparente fue determinada para una humedad cercana al Límite Superior del Agua Disponible. Para el caso de los suelos con arcillas dilatables, muy especialmente los Vertisuelos, la densidad aparente se realizó tomando agregados entre 40 y 60 cm³ y utilizando el método del petróleo descrito por Cid (1992).

Para el resto de los suelos se utilizó el método de anillos descrito por Cid (1985).

El Límite Superior de la RFU, llamada comúnmente Capacidad de Campo, se determinó por el método de la Plazoleta CNSF-IIRD (1984).

La granulometría fue determinada por el Método de la Pipeta de Robinson.

Para el caso de la Tasa de Drenaje, se escogió el valor de la Velocidad de Infiltración Básica, independientemente del método de determinación seleccionado.

Por su parte los valores de Conductividad Hidráulica Saturada se determinaron en aquellos suelos con manto freático cerca de la superficie por el método del Hoyo de Barrena (Auger Hole), Van Beers (1983), mientras que para los suelos con muy buen drenaje y manto freático profundo se utilizó el método del Permeámetro con carga constante (Eijkelkamp, 1998).

El Límite Inferior de la Reserva Fácilmente Utilizable (RFU), comúnmente llamado Límite Productivo, se consideró como el 80% del Límite Superior de la RFU o Capacidad de Campo.

La metodología utilizada en el procesamiento e interpretación de los datos de campo se apoyó en los trabajos de Cid (2004 y 2006).

RESULTADOS Y DISCUSIÓN

Como se ha explicado anteriormente una de las debilidades a las que se enfrentan los proyectistas, especialistas e investi-

gadores que trabajan en la actividad del riego y el drenaje es la referida al acceso de la información existente sobre el funcionamiento hídrico de los suelos, específicamente la referida a las propiedades físicas e hidrofísicas, debido fundamentalmente a lo dispersa que se encuentra esta información.

Debido a la demanda creciente de esta información, no solo para el diseño y proyección de sistemas de riego y drenaje, sino también por el uso cada vez mayor de los modelos de simulación, un grupo de investigadores del antiguo Instituto de Investigaciones de Riego y Drenaje y colegas del Grupo de Agrofísica de la Universidad Agraria de La Habana decidieron recopilar la mayor cantidad de datos de física e hidrofísica de los principales suelos de importancia agrícola del país. Una vez recopilados los datos se conformó un programa de actividades dirigido a realizar pruebas en el campo de aquellas propiedades que sufren fuertes modificaciones con los cambios estructurales que experimenta el suelo por factores antrópicos.

De esta manera se conformaron tablas de las principales características físicas del suelo utilizadas desde el punto de vista hídrico que pueden resultar de mucha utilidad para satisfacer las demandas de diferentes usuarios, las que se muestran al final del trabajo.

Resulta necesario señalar que para este primer intento de poner a disposición de investigadores, especialistas y proyectistas de una base de datos, se tomó como criterio para la selección de los suelos, aquellos en los que más se practica la agricultura de regadío. Por su parte los criterios de selección de aquellas propiedades físicas que deben ser considerados en la base de datos y que caracterizan físicamente al suelo se sustentó en los procesos fundamentales del comportamiento hripedológico de los suelos: Granulometría, dinámica y estática del agua en el suelo.

De manera general los resultados obtenidos respecto a las características granulométricas (textura), coinciden con los reportados por otros autores. Esta propiedad comúnmente no se modifica mucho por la acción antropogénica.

Respecto a la dinámica y estática del agua en el suelo, no todos los resultados coinciden con los reportados por otros autores, lo que podría atribuirse a procedimientos metodológicos, sobre todo en lo referente al nivel de humedad existente en el momento de la toma de muestras y la forma en que las mismas fueron tomadas, es decir si fueron muestras alteradas o inalteradas. Según Cid (1992), tomar muestras alteradas o inalteradas con anillos en suelos con arcillas dilatables puede conducir a errores considerables en los cálculos, por lo que recomienda tomar agregados con volumen mayor a los 15 cm3.

Otra de las razones por la que los datos no coinciden con los reportados por otros autores puede deberse a modificaciones realizadas a las barrenas, sobre todo para los estudios de la conductividad hidráulica saturada.

CONCLUSIONES

 Resulta evidente que los trabajos de física de suelos, fundamentalmente los referidos al funcionamiento hidropedológico, necesitan un nuevo impulso para situarse a la altura de los años 80 cuando los especialistas contaban con

- la información necesaria de suelos para la elaboración de proyectos en manejo del agua en la agricultura.
- Se presentan las tablas de las principales propiedades que definen el funcionamiento hidropedológico, lo que constituye uno de los primeros intentos por actualizar la información sobre física de suelos de los principales suelos de importan-
- cia agrícola en el país, con énfasis en aquellos en los que la actividad del riego y el drenaje resultan indispensables para obtener producciones agrícolas aceptables.
- Por otra parte se introducen algunos conceptos metodológicos que contribuirán a una mejor calidad de la información y a una homogenización de la misma.

REFERENCIAS BIBLIOGRÁFICAS

- BENNETT, H. M. y R.V. ALLISON: Los Suelos de Cuba y Algunos Nuevos Suelos de Cuba, Edición Revolucionaria, La Habana,
- CNSF-IIRD: *Metodología para la determinación de Propiedades Hidrofísicas*, 55pp., Ed. publicada por el Centro Nacional de Suelos y Fertilizantes, La Habana, 1984.
- CNSF: Estudio Nacional de Física de Suelos en base al Mapa Nacional de Cuba a escala 1:25 000, Ed. MINAG, La Habana, 1985.
- CID, G.: Estudio de la densidad aparente en suelo Ferralítico Rojo compactado a diferentes niveles de compactación del suelo, 14pp., Publicación Interna del IIRD, No 4, La Habana, 1985.
- CID, G.: "Metodología para el manejo hidropedologico de los suelos con arcillas dilatables en Cuba, Parte I: Parámetros fundamentales para la caracterización física de los suelos", *Revista Ciencias Técnicas Agropecuarias*, 13(3): 7-12, 2004.
- CID, G.: "Parámetros fundamentales para la caracterización hidropedológica general de los suelos", *Revista Ciencias Técnicas Agropecuarias*, 15(3): 7-12, 2006.
- EIJKELKAMP AGRISEARCH EQUIPMENT: Soil laboratory equipment, Laboratory permeameters, 65pp., The Netherland, 1998.
- HERNÁNDEZ, A., J.M. PÉREZ, D. BOSCH y L. RIVERO: *Nueva Versión de Clasificación Genética de los Suelos de Cuba*, 64pp., Ed. AGRINFOR, Ministerio de la Agricultura, La Habana, 1999.
- HERNÁNDEZ, A.; O. ASCANIO; M. MORALES y A. CABRERA: Correlación de la nueva versión de clasificación genética de los suelos de Cuba con las clasificaciones internacionales y nacionales, 60 pp., Ed. Instituto Nacional de Ciencias Agrícolas (INCA), San José de las Lajas, La Habana, 2005.
- INSTITUTO DE SUELOS (IS): Clasificación genética de los Suelos de Cuba, 28 pp., Editorial Academia, La Habana, 1980.
- KLIMES, A.S., O. SUAREZ, A. MESA y J. PENA: Suelos de Cuba. Tomo II. Física del suelo, 328pp., Editorial Orbe. La Habana, 1980.
- LÓPEZ, S. T.: Caracterización del movimiento del agua en suelos irrigados del sur de La Habana: Contribución metodológica al procedimiento actual para la determinación de los Balances Hídricos, 110pp., Tesis (en opción al grado científico de Doctor en Ciencias Agrícolas), Instituto Nacional de Ciencias Agrícolas, INCA/IIRD, La Habana, 2002.
- MESA, A. Y O. SUÁREZ: Estudios realizados acerca de las clasificaciones agroproductivas, 42pp., Ed. Dirección Nacional de Suelos y Fertilizantes, La Habana, 1978.
- MINAG-IIRD: Metodología para la aplicación del Pronóstico de Riego por el método bioclimático utilizando el evaporímetro Clase "A", 35pp., Ed. IIRD, La Habana, 1982.
- NAKADIDZE, E.K. y R.F. SIMEON: "Características hidrofísicas de los principales suelos de Cuba", *Voluntad Hidráulica*, 10(23): 33-40, 1972. VAN BEERS, W. F. J.: *The auger Hole methods, a field measurement of the hydraulic conductivity of soil below the water table*,VI Edition, ILRI, Bulletin No. 1 Wageningen, The Netherland, 1983.

ANEXO 1.

PROPIEDADES FÍSICAS E HIDROFÍSICAS DE LOS SUELOS SELECCIONADOS

Nota: Los suelos están identificados de acuerdo a la última Clasificación de Suelos establecida en el país (Hernández, et al., 1999), y su correlación (Hernández, et al., 2003) con la Clasificación Genética de los Suelos de Cuba (IS, 1980).

Alítico amarillento de baja actividad arcillosa húmico (Ferralítico cuarcítico amarillo lixiviado humificado)

Prof. cm	SBDM Da g cm ⁻³	SDUL Cc cm³ cm-³	SLCF Arena %	SLCL Arcilla %	SLSI Limo %	SLDR Inf. Básica m día ⁻¹	SLLL Límite Prod cm³ cm⁻³	SSAT Suelo Satur. cm³ cm⁻³	SSKS K sat cm h ⁻¹
20	1,35	0,154	86,5	5,1	6,6	1,2	0,123	0,475	7,2
40	1,36	0,154	86,7	5,0	6,3		0,123	0,470	
60	1,40	0,155	91,0	3,7	5,3		0,124	0,385	6,3
80	1,39	0,150	91,5	3,5	5,0		0,120	0,373	
100	1,41	0,123	91,6	3,5	5,1		0,100	0,379	

Prof. cm	SBDM Da g cm ⁻³	SDUL Cc cm³ cm-³	SLCF Arena %	SLCL Arcilla %	SLSI Limo %	SLDR Inf. Básica m día ⁻¹	SLLL Límite Prod cm³ cm³	SSAT Suelo Satur. cm³ cm⁻³	SSKS K sat cm h ⁻¹				
	Alítico	amarillento de	baja activida	d arcillosa típi	co (Ferralí	tico cuarcítico	amarillo lixivi	ado típico)					
20	1,30	0,161	88,2	6,6	5,2	1,4	0,127	0,386	6,2				
60	1,45	0,176	80,9	14,4	4,7	1,2	0,140	0,431	5,3				
100	1,57	0,264	57,1	30,5	12,4	0,5	0,211	0,394	2,9				
	Alítico amarillento de alta actividad arcillosa típico (Ferralítico cuarcítico amarillo lixiviado típico)												
20	1,42	0,207	87,2	6,2	6,6	2,6	0,166	0,393	1,6				
40	1,58	0,219	86,7	6,3	7,0		0,175	0,344					
60	1,55	0,279	76,6	13,9	7,5	4,7	0,225	0,341	2,9				
100	1,50	0,339	56,1	35,7	8,2	0,2	0,271	0,405	0,1				
	Alítico	amarillento de a	alta actividad	arcillosa húmi	co (Ferralít	ico cuarcítico a	amarillo lixivia	do húmico)					
25	1,30	0,280	78,5	10,4	11,1	5,4	0,224	0,477	3,2				
50	1,37	0,300	80,3	11,6	8,1	2,2	0,240	0,493	1,2				
80	1,41	0,305	67,5	24,1	8,4		0,244	0,500					
100	1,57	0,319	40,8	51,3	7,9	0,52	0,255	0,405	0,3				

Ferralítico Rojo típico. (Ferralítico Rojo típico)

Prof. cm	SBDM Da g cm ⁻³	SDUL Cc cm³ cm-³	SLCF Arena %	SLCL Arcilla %	SLSI Limo %	SLDR Inf. Básica m día ⁻¹	SLLL Límite Prod cm³ cm⁻³	SSAT Suelo Satur. cm³ cm⁻³	SSKS K sat cm h ⁻¹
20	1,11	0,374	34,5	39,0	26,5	1,9	0,299	0,517	45,0
40	1,20	0,413	35,5	38,5	26,0		0,330	0,594	
60	1,20	0,408	41,0	37,6	21,4		0,326	0,474	8,1
80	1,25	0,421	31,7	39,6	28,7		0,337	0,434	
100	1,30	0,425	30,0	37,0	33,0		0,340	0,478	38,0
		Fer	ralítico Rojo l	húmico (Ferra	lítico Rojo,	no tiene correl	ación)		
20	1,19	0,405	26,3	57,7	16,0	0,6	0,324	0,536	2,0
40	1,21	0,411	27,1	57,4	15,5		0,329	0,532	1,9
60	1,21	0,396	17,8	72,6	9,6		0,317	0,513	5,4
80	1,23	0,400	14,3	77,9	7,8		0,320	0,480	5,2
100	1,24	0,373	16,0	77,0	7,0		0,298	0,453	0,3
		Ferral	ítico Rojo com	pactado hidra	tado (Ferra	lítico Rojo con	ipactado)		
20	1,18	0,394	20,9	57,4	21,7	4,9	0,315	0,480	102,3
40	1,28	0,431	17,7	61,8	20,5		0,345	0,530	60,5
60	1,20	0,397	28,9	62,8	14,3		0,318	0,540	47,8
80	1,20	0,396	20,3	61,4	18,3		0,317	0,490	39,1
		Fersialítico	pardo rojizo i	mullido (Fersia	lítico pard	o rojizo, no tier	e correlación)		
20	1,04	0,345	41,2	35,3	23,5	1,5	0,276	0,618	3,9
40	1,00	0,320	45,1	34,9	20,0	0,8	0,256	0,617	6,6
60	1,18	0,288	47,2	31,4	21,4	0,03	0,230	0,617	0,13
80	1,26	0,302	47,8	29,9	22,3	0,01	0,242	0,497	0,04

Darda	cialítico	mullida	(Darda sin	carbanata	no tiono	correlación)	
rarao	SIBLIFICO	millian	i Pardo sin	carnonato.	no riene	correlacioni	

Prof. cm	SBDM Da g·cm ⁻³	SDUL Cc cm ³ ·cm ⁻³	SLCF Arena %	SLCL Arcilla %	SLSI Limo %	SLDR Inf. Básica m·día ⁻¹	SLLL Límite Prod cm³·cm⁻³	SSAT Suelo Satur. cm ³ ·cm ⁻³	SSKS K sat cm·h
20	1,14	0,293	51,1	21,2	27,7	3,7	0,234	0,570	18,2
40	1,34	0,343	43,4	33,5	23,1		0,274	0,490	
60	1,20	0,265	44,0	33,1	22,9	0,24	0,212	0,550	2,1
80	1,28	0,282	41,2	31,3	27,5	0,05	0,226	0,520	0,9
		Par	do sialítico cál	cico (Pardo co	n carbonato	, no tiene corr	elación)		
20	1,31	0,424	51,8	27,2	21,0	2,1	0,339	0,520	8,1
40	1,35	0,414	51,2	29,0	19,8	0,7	0,331	0,500	1,8
80	1,35	0,405	60,9	26,2	12,9	3,1	0,324	0,500	23,8
		Pa	rdo sialítico vé	ertico (Pardo s	in y con car	bonato plastog	génico)		
20	1,15	0,528	19,3	63,4	17,3	0,17	0,422	0,573	2,6
40	1,2	0,511	17,5	60,9	21,6		0,409	0,570	1,9
60	1,37	0,485	22,1	40,2	37,7		0,388	0,568	3,2
90	1,39	0,512	28,1	28,9	43,0		0,410	0,522	3,1
		Pardo	sialítico grisá	ceo mullido (P	ardo grisác	eo, no tiene coi	rrelación)		
20	1,51	0,291	67,8	10,2	22,0	0,6	0,233	0,430	1,8
40	1,46	0,277	64,2	15,2	20,6		0,222	0,450	3,0
60	1,43	0,259	53,8	32,2	14,0		0,207	0,460	2,4
80	1,59	0,289	51,9	22,5	25,6	1	0,231	0,400	3,0
		Vertisol pélic	co típico (Oscu	ıro plástico no	gleyzado y	gleyzoso, no ti	ene correlació	n)	
20	0,926	0,587	12,5	64,5	23,0	0,43	0,470	0,639	1,5
60	1,08	0,519	13,1	63,1	23,8	0,17	0,415	0,590	0,9
80	1,08	0,481	8,6	72,6	18,8	0,17	0,385	0,592	0,7
		Vertisol pélico	o mullido (Osc	euro plástico n	o gleyzado	y gleyzoso, no	tiene correlacio	on)	
Prof	SBDM	SDUL	SLCF	SLCL Arcilla	SLSI	SLDR	SLLL Limite Prod	SSAT	SSKS

Prof	SBDM	SDUL	SLCF	SLCL	SLSI	SLDR	SLLL	SSAT	SSKS
cm	Da	Cc	Arena	Arcilla	Limo	Inf. Básica	Límite Prod	Suelo Satur.	K sat
	g·cm⁻³	cm ³ ·cm ⁻³	%	%	%	m∙día ⁻¹	cm ³ ·cm ⁻³	cm ³ ·cm ⁻³	cm·h ⁻¹
20	0,94	0,499	24,2	60,0	15,8	1,12	0,399	0,647	0,5
60	1,02	0,455	23,5	63,2	13,3		0,364	0,614	0,3
80	1,15	0,491	24,4	68,1	7,5		0,393	0,565	0,3
		Vertisol pélic	co cálcico (Osc	uro plástico no	gleyzado y	gleyzoso, no ti	ene correlaciór	1)	
15	1,10	0,617	12,5	64,5	23,0	0,96	0,557	0,630	3,8
40	1,10	0,468	11,6	67,1	21,3		0,374	0,585	2,9
100	1,29	0,542	10,4	70,8	18,8		0,434	0,580	2,5
			Vertisol cróm	ico típico (Osc	uro plástico	gris amarillen	to)		
30	1,00	0,591	18,6	53,2	28,2	0,11	0,473	0,614	0,3
55	1,02	0,581	24,7	52,0	23,3		0,465	0,622	0,04
76	1,05	0,550	14,5	66,6	18,9		0,440	0,611	0,04
132	1,09	0,568	19,8	57,5	22,7		0,454	0,596	0,04
		•	Vertisol crómi	co mullido (Os	curo plástic	o gris amarille	nto)		
20	1,03	0,518	16,8	63,1	20,1	0,3	0,414	0,620	1,32
50	0,97	0,497	20,1	57,8	22,1		0,410	0,640	1,26
95	1,02	0,506	23,6	55,1	21,3		0,405	0,620	1,29

Prof cm	SBDM Da g·cm ⁻³	SDUL Cc cm³·cm-³	SLCF Arena %	SLCL Arcilla %	SLSI Limo %	SLDR Inf. Básica m·día ⁻¹	SLLL Límite Prod cm ³ ·cm ⁻³	SSAT Suelo Satur. cm ³ ·cm ⁻³	SSKS K sat cm·h ⁻¹
			Vertisol crómi	co cálcico (Osc	uro plástic	o gris amariller	ito)		
20	1,06	0,745	19,5	67,0	13,5	1,03	0,596	0,793	3,6
40	1,07	0,770	19,6	68,5	11,9		0,616	0,829	3,1
60	1,07	0,793	20,3	68,9	10,8		0,634	0,835	2,3
80	1,11	0,738	18,4	70,4	11,2		0,590	0,861	2,1
100	1,16	0,737	19,6	70,0	10,4		0,590	0,831	1,8

Hidromórfico gley vértico típico (Oscuro plástico gleyzado, no tiene correlación)

Prof. cm	SBDM Da g cm ⁻³	SDUL Cc cm³ cm-³	SLCF Arena %	SLCL Arcilla %	SLSI Limo %	SLDR Inf. Básica m día ⁻¹	SLLL Límite Prod cm³ cm-³	SSAT Suelo Satur. cm³ cm³	SSKS K sat cm h ⁻¹
20	1,03	0,506	15,83	60,63	23,54	1,4	0,405	0,600	3,0
50	1,02	0,522	14,69	62,62	22,69		0,418	0,610	2,5
90	1,02	0,502	16,40	63,79	19,81		0,402	0,610	2,7
		Hidromórfic	co gley vértico	mullido (Oscu	ro plástico	gleyzado, no tie	ne correlación)	
20	1,06	0,440	8,1	76,9	15,0	1,8	0,352	0,543	4,9
70	1,08	0,505	3,7	83,9	12,4		0,404	0,588	3,2
105	1,12	0,554	6,9	84,3	8,8		0,443	0,614	1,4
		Hidromórfi	co gley vértico	cálcico (Oscu	o plástico g	gleyzado, no tie	ne correlación))	
16	1,01	0,610	6,5	63,0	30,5	0,72	0,493	0,630	2,1
35	1,01	0,569	9,9	68,7	21,4	0,22	0,455	0,610	0,9
60	1,01	0,535	4,0	73,6	22,4	0,10	0,428	0,622	0,4
88	1,02	0,517	2,8	72,9	24,3	0,3	0,414	0,619	1,04
	Hie	dromórfico gley	nodular ferru	iginoso húmico	(Incluye G	Gley Ferralítico	no tiene corre	lación)	
20	1,44	0,444	35,2	15,8	49,0	0,24	0,355	0,460	5,6
40	1,45	0,419	35,1	27,5	37,4		0,335	0,440	4,8
60	1,31	0,388	27,6	29,7	42,7		0,310	0,490	1,3
80	1,31	0,339	22,5	45,0	32,5		0,271	0,480	1,1
100	1,36	0,369	23,3	49,3	27,4		0,295	0,500	0,9
	Hidromórfi	co gley nodular	· ferruginoso t	ípico (Incluye (Gley Ferral	ítico y Amarille	nto cuarcítico	concresionario))
20	1,56	0,452	39,9	27,4	32,7	1,2	0,362	0,682	131,7
40	1,60	0,397	34,5	30,6	34,9		0,318	0,531	
60	1,63	0,409	26,8	52,6	20,6		0,327	0,751	45,0
80	1,65	0,388	23,7	53,1	23,2		0,310	0,775	55,0
100	1,65	0,373	24,3	52,0	23,7		0,298	0,782	

Hidromórfico gley nodular ferruginoso húmico petroférrico (Incluye Gley Ferralítico, y Amarillento cuarcítico laterizado)

Prof cm	SBDM Da g cm ⁻³	SDUL Cc cm³ cm-³	SLCF Arena %	SLCL Arcilla %	SLSI Limo %	SLDR Inf. Básica m día ⁻¹	SLLL Límite Prod cm³ cm³	SSAT Suelo Satur. cm³ cm³	SSKS K sat cm h ⁻¹
25	1,30	0,283	78,5	10,4	11,1	6,1	0,226	0,447	28,2
50	1,35	0,297	80,3	11,6	8,1	0,2	0,238	0,462	1,6
80	1,35	0,290	67,5	24,1	8,4	0,2	0,232	0,435	1,3
100	1,60	0,333	40,8	51,3	7,9		0,266	0,410	1,1

LEYENDA: Prof: Profundidad, cm; SBDM: Densidad Aparente o Peso Volumétrico, g·cm³; SDUL: Límite Superior de la Reserva Fácilmente Utilizable (comúnmente llamada Capacidad de Campo), cm³·cm³; SLCF: Arena, %; SLCL: Arcilla, %; SLSI: Limo, %; SLDR: Tasa de Drenaje en m.día¹; SLLL: Límite Inferior de la Reserva Fácilmente Utilizable (comúnmente llamado Límite Productivo), cm³·cm³; SSAT: Suelo Saturado, cm³·cm³; SSKS: Conductividad Hidráulica Saturada, cm·h¹.